| [1] |
MAO X, ZHANG W, NI Y Q, et al. A Prediction Model for Postoperative Pulmonary Complication in Pulmonary Function-Impaired Patients Following Lung Resection[J]. J Multidiscip Healthc, 2021, 14: 3187-3194. doi:10.2147/jmdh.s327285
doi: 10.2147/jmdh.s327285
|
| [2] |
郭高锋, 阮孝国, 王洋洋, 等. 床旁膈肌超声在预测胸腔镜肺叶切除术后肺部并发症中的应用价值[J]. 实用医学杂志, 2024, 40(2): 207-212.
|
| [3] |
FERNANDEZ-BUSTAMANTE A, FRENDL G, SPRUNG J, et al. Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators[J]. JAMA Surg, 2017, 152(2): 157-166. doi:10.1001/jamasurg.2016.4065
doi: 10.1001/jamasurg.2016.4065
|
| [4] |
胡荣贵, 傅剑华, 罗孔嘉, 等. 术前放化疗对食管癌患者肺功能和术后肺部并发症的影响[J]. 中华胃肠外科杂志, 2013, 16(9): 827-830.
|
| [5] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
| [6] |
DOHERTY C, KUBASKI F, TOMATSU S, et al. Non-invasive pulmonary function test on Morquio patients[J]. J Rare Dis Res Treat, 2017, 2(2): 55-62. doi:10.29245/2572-9411/2017/2.1097
doi: 10.29245/2572-9411/2017/2.1097
|
| [7] |
KAWAMOTO H, KAMBE M. [Pulmonary function tests][J]. Rinsho Byori, 2003, 51(6): 568-573.
|
| [8] |
BRUCK O, NAOFAL A, SENUSSI M H. Lung, Pleura, and Diaphragm Point-of-Care Ultrasound[J]. Semin Ultrasound CT MR, 2024, 45(1): 120-131. doi:10.1053/j.sult.2024.01.001
doi: 10.1053/j.sult.2024.01.001
|
| [9] |
TENZA-LOZANO E, LLAMAS-ALVAREZ A, JAIMEZ-NAVARRO E, et al. Lung and diaphragm ultrasound as predictors of success in weaning from mechanical ventilation[J]. Crit Ultrasound J, 2018, 10(1): 12. doi:10.1186/s13089-018-0094-3
doi: 10.1186/s13089-018-0094-3
|
| [10] |
LLAMAS-ÁLVAREZ A M, TENZA-LOZANO E M, LATOUR-PÉREZ J. Diaphragm and Lung Ultrasound to Predict Weaning Outcome: Systematic Review and Meta-Analysis[J]. Chest, 2017, 152(6): 1140-1150. doi:10.1016/j.chest.2017.08.028
doi: 10.1016/j.chest.2017.08.028
|
| [11] |
LI T, WU X Z, LONG D, et al. Ultrasonographic modeling of lung and diaphragm mechanics: Clinical trial of a novel non-invasive method to evaluate pre-operative pulmonary function[J]. PeerJ, 2024, 12: e18677. doi:10.7717/peerj.18677
doi: 10.7717/peerj.18677
|
| [12] |
中华医学会超声医学分会. 肺部超声临床应用专家共识[J]. 中华超声影像学杂志, 2022, 31(9): 757-768.
|
| [13] |
DANISH M, AGARWAL A, GOYAL P, et al. Diagnostic Performance of 6-Point Lung Ultrasound in ICU Patients: A Comparison with Chest X-Ray and CT Thorax[J]. Turk J Anaesthesiol Reanim, 2019, 47(4): 307-319. doi:10.5152/tjar.2019.73603
doi: 10.5152/tjar.2019.73603
|
| [14] |
KONG S, WANG J, LI Y, et al. Value of Bedside Lung Ultrasound in Severe and Critical COVID-19 Pneumonia[J]. Respir Care, 2021, 66(6): 920-927. doi:10.4187/respcare.08382
doi: 10.4187/respcare.08382
|
| [15] |
ZAMBON M, GRECO M, BOCCHINO S, et al. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: A systematic review[J]. Intensive Care Med, 2017, 43(1): 29-38. doi:10.1007/s00134-016-4524-z
doi: 10.1007/s00134-016-4524-z
|
| [16] |
MOINGEON P, KUENEMANN M, GUEDJ M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine[J]. Drug Discov Today, 2022, 27(1): 215-222. doi:10.1016/j.drudis.2021.09.006
doi: 10.1016/j.drudis.2021.09.006
|
| [17] |
BIFARIN O O. Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification[J]. PLoS One, 2023, 18(5): e0284315. doi:10.1371/journal.pone.0284315
doi: 10.1371/journal.pone.0284315
|
| [18] |
GUO Z, WANG P, YE S, et al. Interpretable Machine Learning Models Based on Shapley Additive Explanations for Predicting the Risk of Cerebrospinal Fluid Leakage in Lumbar Fusion Surgery[J]. Spine (Phila Pa 1976), 2024, 49(18): 1281-1293. doi:10.1097/brs.0000000000005087
doi: 10.1097/brs.0000000000005087
|
| [19] |
ZARGARI MARANDI R. ExplaineR: An R package to explain machine learning models[J]. Bioinform Adv, 2024, 4(1): vbae049. doi:10.1093/bioadv/vbae049
doi: 10.1093/bioadv/vbae049
|
| [20] |
BRUSASCO V, CRAPO R, VIEGI G, et al. Coming together: The ATS/ERS consensus on clinical pulmonary function testing[J]. Eur Respir J, 2005, 26(1): 1-2. doi:10.1183/09031936.05.00034205
doi: 10.1183/09031936.05.00034205
|
| [21] |
BALL L, ROCCO P R M, PELOSI P. Editorial: Lung Imaging in Respiratory Failure[J]. Front Physiol, 2022, 13: 862647. doi:10.3389/fphys.2022.862647
doi: 10.3389/fphys.2022.862647
|
| [22] |
DESANTI R L, GILL K G, SWANSON J O, et al. Comparison of chest radiograph and lung ultrasound in children with acute respiratory failure[J]. J Ultrasound, 2023, 26(4): 861-870. doi:10.1007/s40477-023-00827-y
doi: 10.1007/s40477-023-00827-y
|
| [23] |
路子蕴, 孙行, 徐璐, 等. 日间胸腔镜手术患者术后肺部并发症危险因素分析[J]. 实用医学杂志, 2023, 39(24): 3205-3209.
|
| [24] |
QIAN Z, YANG M, LI L, et al. Ultrasound assessment of diaphragmatic dysfunction as a predictor of weaning outcome from mechanical ventilation: A systematic review and meta-analysis[J]. BMJ Open, 2018, 8(9): e021189. doi:10.1136/bmjopen-2017-021189
doi: 10.1136/bmjopen-2017-021189
|
| [25] |
XU Q, YANG X, QIAN Y, et al. Speckle tracking quantification parasternal intercostal muscle longitudinal strain to predict weaning outcomes: A multicentric observational study[J]. Shock, 2023, 59(1): 66-73. doi:10.1097/shk.0000000000002044
doi: 10.1097/shk.0000000000002044
|
| [26] |
PODDIGHE D, VAN HOLLEBEKE M, CHOUDHARY Y Q, et al. Accuracy of respiratory muscle assessments to predict weaning outcomes: A systematic review and comparative meta-analysis[J]. Crit Care, 2024, 28(1): 70. doi:10.1186/s13054-024-04823-4
doi: 10.1186/s13054-024-04823-4
|
| [27] |
STAHR C S, SAMARAGE C R, DONNELLEY M, et al. Quantification of heterogeneity in lung disease with image-based pulmonary function testing[J]. Sci Rep, 2016, 6: 29438. doi:10.1038/srep29438
doi: 10.1038/srep29438
|
| [28] |
STENWIG E, SALVI G, ROSSI P S, et al. Comparative analysis of explainable machine learning prediction models for hospital mortality[J]. BMC Med Res Methodol, 2022, 22(1): 53. doi:10.1186/s12874-022-01540-w
doi: 10.1186/s12874-022-01540-w
|
| [29] |
ABBAS S, QAISAR A, FAROOQ M S, et al. Smart Vision Transparency: Efficient Ocular Disease Prediction Model Using Explainable Artificial Intelligence[J]. Sensors (Basel), 2024, 24(20): 6618. doi:10.3390/s24206618
doi: 10.3390/s24206618
|
| [30] |
BRANKOVIC A, HUANG W, COOK D, et al. Elucidating Discrepancy in Explanations of Predictive Models Developed Using EMR[J]. Stud Health Technol Inform, 2023, 310: 865-869. doi:10.3233/shti231088
doi: 10.3233/shti231088
|