实用医学杂志 ›› 2022, Vol. 38 ›› Issue (18): 2279-2283.doi: 10.3969/j.issn.1006⁃5725.2022.18.006

• 专题报道 • 上一篇    下一篇

基于超声特征构建机器学习模型预测浸润性乳腺癌 Luminal 分型

孙芳 许永波 崔广和 李鑫焱 董景云 焦玉婷 唐丽玮    

  1. 滨州医学院附属医院超声医学科(山东滨州 256600)

  • 出版日期:2022-09-25 发布日期:2022-09-25
  • 通讯作者: 唐丽玮 E⁃mail:164604500@qq.com
  • 基金资助:
    山东省医药卫生科技发展计划项目(编号 :202009020663)

Predict the Luminal type of invasive breast cancer using machine learning models based on ultrasono⁃ graphic features

 SUN Fang,XU Yongbo,CUI Guanghe,LI Xinyan,DONG Jingyun,JIAO Yuting,TANG Liwei.    

  1. Department of Ultrasound,Binzhou Medical University Hospital,Binzhou 256600,China 

  • Online:2022-09-25 Published:2022-09-25
  • Contact: TANG Liwei E⁃mail:164604500@qq.com

摘要:

目的 基于超声特征构建机器学习模型预测浸润性乳腺癌Luminal分型,筛选影响其Luminal 分型的重要超声特征。方法 回顾性分析 529 例经术后病理证实为浸润性乳腺癌患者的超声声像图特征 及免疫组化特征,根据免疫组化特征将患者分为 Luminal 组和非 Luminal 组。使用 SPSS Modeler 18.0 统计软件,将患者随机分为训练队列和验证队列,分别使用 logistic 回归分析、支持向量机(support vector machine,SVM)、贝叶斯网络、随机森林和决策树等 5 个分类器构建模型。根据模型原始倾向评分绘制 ROC 曲线,计算 AUC 评估不同模型的预测效能,并使用 DeLong 检验比较 5 种模型的 AUC。选用最佳模型,筛选预测乳腺癌 Luminal 分型的重要变量。结果 在训练队列和验证队列中,logistic 回归分析与 SVM 有较高的预测能力,高于其他模型,差异有统计学意义(P < 0.05)。使用 SVM 建立模型,影响 Luminal 分型的最重要的三个预测变量分别为结节大小、边缘、钙化。结论 基于超声特征构建机器学习模型预测浸 润性乳腺癌 Luminal 分型,SVM logistic 回归分析具有较高的预测价值,影响 Luminal 分型的最重要的三 个超声特征分别为结节大小、边缘、钙化。

关键词:

机器学习, 浸润性乳腺癌, Luminal 分型, 超声

Abstract:

Objective To build the machine learning models based on ultrasonographic features to predict the Luminal type of invasive breast cancer,and to screen out the important ultrasonographic characteristics that influence the Luminal type. Methods The ultrasonographic and immunohistochemical features of 529 patients with postoperative pathology⁃diagnosed invasive breast cancer were studied retrospectively. The patients were divided into two groups based on immunohistochemical features:luminal and non⁃luminal. Using SPSS Modeler 18.0 statis⁃ tical software,patients were randomly divided into training cohort and validation cohort,and five classifiers were used to build the models,including Logistic regression analysis,support vector machine (SVM),Bayesian network,random forest,and decision tree. The ROC curves were drawn according to the original propensity score of the models. The AUCs were used to evaluate the predictive ability of different models ,and DeLong test was used to compare the AUCs of the five models. The best model was used to screen out the most important variables for predicting the Luminal type. Results Logistic regression analysis and SVM outperformed other models in both the training and validation cohorts,and the difference was statistically significant(P < 0.05). The three most important variables for predicting the Luminal type,according to the SVM model,were diameter,margin,and calcification. Conclusion Machine learning models based on ultrasonographic features can accurately predict the Luminal type of invasive breast cancer,and SVM outperforms Logistic regression analysis in terms of predictive ability. The three most important ultrasonographic features for predicting Luminal type are diameter,margin,and calcification. 

Key words:

 , machine learning invasive breast cancer Luminal type ultrasound