实用医学杂志 ›› 2021, Vol. 37 ›› Issue (17): 2266-2270.doi: 10.3969/j.issn.1006⁃5725.2021.17.020

• 医学检查与临床诊断 • 上一篇    下一篇

基于增强CT影像组学联合机器学习鉴别均质性肾透明细胞癌与肾乏脂肪血管平滑肌脂肪瘤

黄忠江1 姜增誉2 李健丁2 张智星1 陈文青2    

  1. 1 山西医科大学医学影像学院(太原 030000);2 山西医科大学第一医院影像科(太原 030000)

  • 出版日期:2021-09-10 发布日期:2021-09-10
  • 通讯作者: 姜增誉 E⁃mail:sxjiangzengyu@163.com
  • 基金资助:
    山西省研究生教育教学改革项目(编号:2020YJJG129)

Application of enhanced CT radiomics in differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma 

HUANG Zhongjiang*,JIANG Zengyu,LI Jianding,ZHANG Zhixing,CHEN Wenqing   

  1. School of Medical Imaging,Shanxi Medical University,Taiyuan 030000,China

  • Online:2021-09-10 Published:2021-09-10
  • Contact: JIANG Zengyu E⁃mail:sxjiangzengyu@163.com

摘要:

目的 使用基于增强 CT 影像组学特征联合机器学习鉴别均质性肾透明细胞癌与肾乏脂肪 血管平滑肌脂肪瘤。方法 回顾性分析术后病理证实的均质性肾透明细胞癌 26 例,肾乏脂肪血管平滑肌脂肪瘤 22 例。CT 图像手工勾画肿瘤感兴趣区,提取组学特征,数据经过归一化及空间降维,筛选特征分别建立支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)模型,进行 5 倍交叉验证,选取交叉验证集 AUC 最高的模型为最佳模型。分析临床特征确定预测因子并建立临床预测模型,利用临床所选预测因子和最 佳组学模型预测值建立综合模型并绘制列线图。以 Hosmer⁃Lemeshow 拟合优度检验评价列线图的拟合度。绘制决策曲线评价列线图的净获益。结果 最佳组学模型为 LR 模型,经 bootstrap 法内部验证模型 AUC 值为 0.836(95%CI:0.701~0.927)。综合模型 AUC 值为 0.869(95%CI:0.740~0.949),列线图校正曲 线具有良好的一致性,模型的决策曲线也获得了良好的净获益。结论 结合临床特征与影像组学特征具有较好的鉴别肾均质性透明细胞癌与肾乏脂肪血管平滑肌脂肪瘤能力

关键词:

机器学习, 影像组学, 肾透明细胞癌

Abstract:

Objective Using the enhanced CT radiomics in differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. Methods Retrospective analysis was performed on 28 cases of homogeneous clear cell renal cell carcinoma and 22 cases of renal angiomyolipoma without visible fat which were confirmed by postoperative pathology. The arterial and venous phase images manual sketch tumor area were concerned,About 1 706 radiomics features,data after normalization and by space dimension reduction,were extracted from the image. Features were screened to establish LR,SVM,RF model respectively,five ⁃fold cross validation and selecting cross validation were used to set the highest AUC model as the best model. The clinical features were analyzed to determine the predictors and the clinical model. The comprehensive model was established by multi⁃factor binary Logistic regression based on the predicted values of the selected optimal radiomics model and clinical predictors. The nomogram based on combined with clinical factor and radiomics model. The test of Hosmer⁃ Lemeshow was used to evaluate the fitness of the line chart. Decision curve analysis was applied for clinical use. Results The best radiomics model was LR model,and the AUC of the model verified by Bootstrap method was 0.836(95%CI:0.701~0.927). The AUC value of the comprehensive model was 0.869(95%CI:0.701~0.927),and the calibration curve of the nomogram showed good consistency. Decision curve analysis verified the clinical usefulness of the predictive nomogram. Conclusion The combination of clinical factors and radiomics features has a strong ability to distinguish renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma 

Key words:

machine learning, radiomics, clear cell renal cell carcinoma