| [1] |
LI G, MA J, CUI S, et al. Parkinson′s disease in China: A forty-year growing track of bedside work [J]. Transl Neurodegener, 2019, 8(1): 22. doi:10.1186/s40035-019-0162-z
doi: 10.1186/s40035-019-0162-z
|
| [2] |
SIMOLA N, MORELLI M, CARTA A R. The 6-hydroxydopamine model of Parkinson′s disease [J]. Neurotox Res, 2007, 11(3/4): 151-167. doi:10.1007/bf03033565
doi: 10.1007/bf03033565
|
| [3] |
LIN Z H, LIU Y, XUE N J, et al. Quercetin protects against MPP+/MPTP-induced dopaminergic neuron death in Parkinson′s disease by inhibiting ferroptosis [J]. Oxid Med Cell Longev, 2022, 2022: 1-17. doi:10.1155/2022/7769355
doi: 10.1155/2022/7769355
|
| [4] |
周旭, 逯冉冉, 任芳丽, 等. 表没食子儿茶素没食子酸酯通过自噬-溶酶体途径对MPTP诱导帕金森病模型小鼠的作用 [J]. 实用医学杂志, 2025, 41(8): 1097-1104.
|
| [5] |
GU C, WANG F, ZHANG Y, et al. Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming [J]. Aging Cell, 2021, 20(6): e13375. doi:10.1111/acel.13375
doi: 10.1111/acel.13375
|
| [6] |
OLIYNYK Z, RUDYK M, DOVBYNCHUK T, et al. Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson′s disease in rats [J]. Brain Behav Immun Health, 2023, 30: 100616. doi:10.1016/j.bbih.2023.100616
doi: 10.1016/j.bbih.2023.100616
|
| [7] |
TATTON N A, KISH S J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining [J]. Neuroscience, 1997, 77(4): 1037-1048. doi:10.1016/s0306-4522(96)00545-3
doi: 10.1016/s0306-4522(96)00545-3
|
| [8] |
LI S, WANG Z, LIU G, et al. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress [J]. Front Nutr, 2024, 11: 1425839. doi:10.3389/fnut.2024.1425839
doi: 10.3389/fnut.2024.1425839
|
| [9] |
胡梦妮, 张小蕾, 荣臻, 等. 电针对MPTP诱导帕金森病小鼠FoXO1/NLRP3通路介导神经炎症的影响 [J]. 实用医学杂志, 2024, 40(11): 1494-1499. doi:10.3969/j.issn.1006-5725.2024.11.005
doi: 10.3969/j.issn.1006-5725.2024.11.005
|
| [10] |
DENG I, CORRIGAN F, ZHAI G, et al. Lipopolysaccharide animal models of Parkinson′s disease: Recent progress and relevance to clinical disease [J]. Brain Behav Immun Health, 2020, 4: 100060. doi:10.1016/j.bbih.2020.100060
doi: 10.1016/j.bbih.2020.100060
|
| [11] |
PRASAD E M, HUNG S Y. Behavioral tests in neurotoxin-induced animal models of Parkinson′s disease [J]. Antioxidants, 2020, 9(10): 1007. doi:10.3390/antiox9101007
doi: 10.3390/antiox9101007
|
| [12] |
BEN-SHLOMO Y, DARWEESH S, LLIBRE-GUERRA J, et al. The epidemiology of Parkinson′s disease [J]. Lancet, 2024, 403(10423): 283-292. doi:10.1016/s0140-6736(23)01419-8
doi: 10.1016/s0140-6736(23)01419-8
|
| [13] |
TAGUCHI T, IKUNO M, YAMAKADO H, et al. Animal model for prodromal Parkinson′s disease [J]. Int J Mol Sci, 2020, 21(6): 1961. doi:10.3390/ijms21061961
doi: 10.3390/ijms21061961
|
| [14] |
BHATTACHARYYA D, BHUNIA A. Gut-Brain axis in Parkinson′s disease etiology: The role of lipopolysaccharide [J]. Chem Phys Lipids, 2021, 235: 105029. doi:10.1016/j.chemphyslip.2020.105029
doi: 10.1016/j.chemphyslip.2020.105029
|
| [15] |
JACKSON-LEWIS V, PRZEDBORSKI S. Protocol for the MPTP mouse model of Parkinson′s disease [J]. Nat Protoc, 2007, 2(1): 141-151. doi:10.1038/nprot.2006.342
doi: 10.1038/nprot.2006.342
|
| [16] |
HEO E J, LEE Y, HYUNG SEO M, et al. Association between SGK1 and α-synuclein in skeletal muscle in an MPTP-induced Parkinson′s disease model [J]. Neurosci Lett, 2023, 814: 137464. doi:10.1016/j.neulet.2023.137464
doi: 10.1016/j.neulet.2023.137464
|
| [17] |
SONG S, JIANG L, OYARZABAL E A, et al. Loss of brain norepinephrine elicits neuroinflammation-mediated oxidative injury and selective caudo-rostral neurodegeneration [J]. Mol Neurobiol, 2019, 56(4): 2653-2669. doi:10.1007/s12035-018-1235-1
doi: 10.1007/s12035-018-1235-1
|
| [18] |
MATSUMOTO M, LIU J, IWATA K, et al. NOX1/NADPH oxidase is involved in the LPS-induced exacerbation of collagen-induced arthritis [J]. J Pharmacol Sci, 2021, 146(2): 88-97. doi:10.1016/j.jphs.2021.01.009
doi: 10.1016/j.jphs.2021.01.009
|
| [19] |
ISENBRANDT A, COULOMBE K, MORISSETTE M, et al. Three-dimensional analysis of sex- and gonadal status- dependent microglial activation in a mouse model of Parkinson′s disease [J]. Pharmaceuticals, 2023, 16(2): 152. doi:10.3390/ph16020152
doi: 10.3390/ph16020152
|
| [20] |
ZHOU X, GAO Y, WEI J, et al. The intestinal microbiota exerts a sex-specific influence on neuroinflammation in a Parkinson′s disease mouse model [J]. Neurochem Int, 2024, 173: 105661. doi:10.1016/j.neuint.2023.105661
doi: 10.1016/j.neuint.2023.105661
|
| [21] |
SUN J, LIN X M, LU D H, et al. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons [J]. J Clin Invest, 2023, 133(13): e173110. doi:10.1172/jci173110
doi: 10.1172/jci173110
|
| [22] |
WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders [J]. Lancet Neurol, 2014, 13(10): 1045-1060. doi:10.1016/s1474-4422(14)70117-6
doi: 10.1016/s1474-4422(14)70117-6
|
| [23] |
JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinson′s disease [J]. Mol Neurobiol, 2017, 54(4): 3078-3101. doi:10.1007/s12035-016-9879-1
doi: 10.1007/s12035-016-9879-1
|
| [24] |
THAKKAR H, CHATTERJEE S, VERMA A, et al. Malondialdehyde mediated alpha-synuclein aggregation: A plausible etiology of Parkinson′s disease in oxidative stress [J]. Chem Res Toxicol, 2025, 38(4): 573-582. doi:10.1021/acs.chemrestox.4c00348
doi: 10.1021/acs.chemrestox.4c00348
|
| [25] |
BJØRKLUND G, PEANA M, MAES M, et al. The glutathione system in Parkinson′s disease and its progression [J]. Neurosci Biobehav Rev, 2021, 120: 470-478. doi:10.1016/j.neubiorev.2020.10.004
doi: 10.1016/j.neubiorev.2020.10.004
|
| [26] |
PAJARES M, ROJO A I, MANDA G, et al. Inflammation in Parkinson′s disease: Mechanisms and therapeutic implications [J]. Cells, 2020, 9(7): 1687. doi:10.3390/cells9071687
doi: 10.3390/cells9071687
|
| [27] |
AGRAWAL S, KUMARI R, SOPHRONEA T, et al. Design and synthesis of benzo[d]thiazol-2-yl-methyl-4-(substituted)-piperazine-1-carbothioamide as novel neuronal nitric oxide inhibitors and evaluation of their neuroprotecting effect in 6-OHDA-induced unilateral lesioned rat model of Parkinson′s disease [J]. Biomed Pharmacother, 2022, 156: 113838. doi:10.1016/j.biopha.2022.113838
doi: 10.1016/j.biopha.2022.113838
|
| [28] |
WANG A, ZHONG G, YING M, et al. Inhibition of NLRP3 inflammasome ameliorates LPS-induced neuroinflammatory injury in mice via PINK1/Parkin pathway [J]. Neuropharmacology, 2024, 257: 110063. doi:10.1016/j.neuropharm.2024.110063
doi: 10.1016/j.neuropharm.2024.110063
|
| [29] |
LI Y, JIANG J, LI J, et al. Exosome‐derived CDC42 from hypoxia‐pretreated neural stem cells inhibits ACSL4‐related ferroptosis to alleviate vascular injury in Parkinson′s disease mice models [J]. J Neurochem, 2025, 169(3): e70027. doi:10.1111/jnc.70027
doi: 10.1111/jnc.70027
|