实用医学杂志 ›› 2025, Vol. 41 ›› Issue (21): 3378-3384.doi: 10.3969/j.issn.1006-5725.2025.21.012

• 临床研究 • 上一篇    

腹腔镜下根治性前列腺切除术后淋巴漏风险预测模型的构建与验证

杨秀冬1,刘星1,刘鑫2,姜岩1,王维1,何宗斌1,黄沙1,文美红3,刘亚珍1()   

  1. 1.南方医科大学珠江医院,泌尿外科,(广东 广州 510282 )
    2.南方医科大学珠江医院,医学工程部,(广东 广州 510282 )
    3.南方医科大学珠江医院,肿瘤科,(广东 广州 510282 )
  • 收稿日期:2025-06-03 出版日期:2025-11-10 发布日期:2025-11-13
  • 通讯作者: 刘亚珍 E-mail:263649576@qq.com
  • 基金资助:
    国家卫生健康委医药卫生科技发展研究中心临床研究科研专项基金(WKZX2023CX040001)

Construction and clinical validation of a machine learning⁃based nomogram model for predicting lymphatic leakage following radical prostatectomy

Xiudong YANG1,Xing LIU1,Xin LIU2,Yan JIANG1,Wei WANG1,Zongbin HE1,Sha HUANG1,Meihong WEN3,Yazhen. LIU1()   

  1. *.Department of Urology,Zhujiang Hospital,Southern Medical University,Guangzhou 510282,Guangdong,China
  • Received:2025-06-03 Online:2025-11-10 Published:2025-11-13
  • Contact: Yazhen. LIU E-mail:263649576@qq.com

摘要:

目的 探讨腹腔镜下根治性前列腺切除术(RP)术后淋巴漏的危险因素,构建基于机器学习的列线图预测模型,为临床预防淋巴漏提供依据。 方法 回顾性分析2020年至2024年1月以来248例RP患者的围术期数据,通过logistic单因素及多因素回归筛选独立危险因素,构建预测模型并采用ROC曲线评估诊断效能,利用5倍交叉验证模型泛化能力,最终绘制列线图实现风险量化。 结果 248例患者中89例(35.9%)存在淋巴漏,159例(64.1%)无淋巴漏;术中淋巴结清扫(OR = 5.415,95%CI:2.167 ~ 13.532,P < 0.001)、术中使用血浆(OR = 2.952,95%CI:1.524 ~ 5.718,P = 0.001)和术后禁食时间2 d及以上(OR = 1.412,95%CI:1.089 ~ 1.829,P = 0.009)是发生淋巴漏的独立危险因素。模型评价曲线表明,该模型精度高,偏差小(AUC = 0.711,95%CI:0.647 ~ 0.776,P < 0.001,敏感度0.764,特异度0.597)。5倍交叉验证法证实了模型的准确性(训练集 AUC = 0.822;测试集AUC = 0.829)。列线图可量化淋巴漏发生率。 结论 术中进行淋巴结清扫、术中使用血浆以及术后禁食时间≥ 2 d,是RP术后发生淋巴漏的独立危险因素,对应的预测模型经验证临床效能良好。

关键词: 机器学习, 根治性前列腺切除术, 淋巴漏, 疾病预测模型, 危险因素

Abstract:

Objective To identify risk factors associated with lymphatic leakage after laparoscopic radical prostatectomy (LRP) and to develop a machine learning?based nomogram for predicting such outcomes to support clinical prevention strategies. Methods We retrospectively analyzed perioperative data from 248 patients who underwent radical prostatectomy for prostate cancer between January 2020 and January 2024. Independent risk factors were identified through univariate and multivariate logistic regression analyses. A predictive model was developed, and its diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). Five?fold cross?validation was performed to evaluate the model′s generalizability. A nomogram was subsequently constructed to facilitate individualized risk quantification. Results Among the 248 patients, 89 (35.9%) developed lymphatic leakage, while 159 (64.1%) did not. Independent risk factors for lymphatic leakage included intraoperative lymph node dissection (OR = 5.415, 95%CI: 2.167 ~ 13.532, P < 0.001), intraoperative plasma transfusion (OR = 2.952, 95%CI: 1.524 ~ 5.718, P = 0.001), and postoperative fasting duration of ≥ 2 days (OR = 1.412, 95%CI: 1.089 ~ 1.829, P = 0.009). The predictive model showed good discrimination and calibration (AUC = 0.711, 95%CI: 0.647 ~ 0.776, P < 0.001; sensitivity: 0.764; specificity: 0.597). Model robustness was confirmed through five?fold cross?validation (training set AUC = 0.822; test set AUC = 0.829). The nomogram provided a clinically useful tool for quantifying individual risk of lymphatic leakage. Conclusions Intraoperative lymph node dissection, plasma transfusion, and postoperative fasting lasting ≥ 2 days are independent risk factors for lymphatic leakage following radical prostatectomy. The validated predictive model demonstrates favorable clinical utility.

Key words: machine learning, radical prostatectomy, lymphatic leakage, predictive model, risk factors

中图分类号: