1 |
BASILE D P, ANDERSON M D, SUTTON T A. Pathophysiology of acute kidney injury [J]. Compr Physiol, 2012, 2(2):1303-1353.
|
2 |
VENKATACHALAM M A, WEINBERG J M, KRIZ W, et al. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression [J]. J Am Soc Nephrol, 2015, 26(8): 1765-1776. doi:10.1681/asn.2015010006
doi: 10.1681/asn.2015010006
|
3 |
BOUCHARD J, ACHARYA A, CERDA J, et al. A Prospective International Multicenter Study of AKI in the Intensive Care Unit [J]. Clin J Am Soc Nephrol, 2015, 10(8): 1324-1331. doi:10.2215/cjn.04360514
doi: 10.2215/cjn.04360514
|
4 |
HOSTE E A, BAGSHAW S M, BELLOMO R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study [J]. Intensive Care Med, 2015, 41(8): 1411-1423. doi:10.1007/s00134-015-3934-7
doi: 10.1007/s00134-015-3934-7
|
5 |
RONCO C, BELLOMO R, KELLUM J A. Acute kidney injury [J]. Lancet, 2019, 394(10212): 1949-1964. doi:10.1016/s0140-6736(19)32563-2
doi: 10.1016/s0140-6736(19)32563-2
|
6 |
KELLUM J A. Acute kidney injury [J]. Nat Rev Dis Primers, 2021, 7(1): 52. doi:10.1038/s41572-021-00291-0
doi: 10.1038/s41572-021-00291-0
|
7 |
HOTCHKISS R S. Cell death [J]. N Engl J Med, 2009, 361(16): 1570-1583. doi:10.1056/nejmra0901217
doi: 10.1056/nejmra0901217
|
8 |
SHI H, GAO Y, DONG Z, et al. GSDMD-Mediated Cardiomyocyte Pyroptosis Promotes Myocardial I/R Injury [J]. Circ Res, 2021, 129(3): 383-396. doi:10.1161/circresaha.120.318629
doi: 10.1161/circresaha.120.318629
|
9 |
VAN DER RIJT S, LEEMANS J C, FLORQUIN S, et al. Immunometabolic rewiring of tubular epithelial cells in kidney disease [J]. Nat Rev Nephrol, 2022, 18(9): 588-603. doi:10.1038/s41581-022-00592-x
doi: 10.1038/s41581-022-00592-x
|
10 |
CHAWLA L S, EGGERS P W, STAR R A, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes [J]. N Engl J Med, 2014, 371(1): 58-66. doi:10.1056/nejmra1214243
doi: 10.1056/nejmra1214243
|
11 |
KWIATKOWSKA E, KWIATKOWSKI S, DZIEDZIEJKO V, et al. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development [J]. Biology (Basel), 2023, 12(2): 327. doi:10.3390/biology12020327
doi: 10.3390/biology12020327
|
12 |
LEVEY A S. Defining AKD: The Spectrum of AKI, AKD, and CKD [J]. Nephron, 2022, 146(3): 302-305. doi:10.1159/000516647
doi: 10.1159/000516647
|
13 |
WANG Z, YING Z, BOSY-WESTPHAL A, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure [J]. Am J Clin Nutr, 2010, 92(6): 1369-1377. doi:10.3945/ajcn.2010.29885
doi: 10.3945/ajcn.2010.29885
|
14 |
SABBAHY M EL, VAIDYA V S. Ischemic kidney injury and mechanisms of tissue repair [J]. Wiley Interdiscip Rev Syst Biol Med, 2011, 3(5): 606-618. doi:10.1002/wsbm.133
doi: 10.1002/wsbm.133
|
15 |
FORBES J M. Mitochondria-Power Players in Kidney Function? [J]. Trends Endocrinol Metab, 2016, 27(7): 441-442. doi:10.1016/j.tem.2016.05.002
doi: 10.1016/j.tem.2016.05.002
|
16 |
ISAKA Y, KIMURA T, TAKABATAKE Y. The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells [J]. Autophagy, 2011, 7(9): 1085-1087. doi:10.4161/auto.7.9.16465
doi: 10.4161/auto.7.9.16465
|
17 |
MALEK M, NEMATBAKHSH M. Renal ischemia/reperfusion injury; from pathophysiology to treatment [J]. J Renal Inj Prev, 2015, 4(2): 20-27.
|
18 |
MULUKUTLA B C, YONGKY A, LE T, et al. Regulation of Glucose Metabolism-A Perspective From Cell Bioprocessing [J]. Trends Biotechnol, 2016, 34(8): 638-651. doi:10.1016/j.tibtech.2016.04.012
doi: 10.1016/j.tibtech.2016.04.012
|
19 |
WEN L, LI Y, LI S, et al. Glucose Metabolism in Acute Kidney Injury and Kidney Repair [J]. Front Med (Lausanne), 2021, 8: 744122. doi:10.3389/fmed.2021.744122
doi: 10.3389/fmed.2021.744122
|
20 |
CANTELMO A R, CONRADI L C, BRAJIC A, et al. Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy [J]. Cancer Cell, 2016, 30(6): 968-985. doi:10.1016/j.ccell.2016.10.006
doi: 10.1016/j.ccell.2016.10.006
|
21 |
DICKMAN K G, MANDEL L J. Differential effects of respiratory inhibitors on glycolysis in proximal tubules [J]. Am J Physiol, 1990, 258(6 Pt 2): F1608-1615. doi:10.1152/ajprenal.1990.258.6.f1608
doi: 10.1152/ajprenal.1990.258.6.f1608
|
22 |
SHERR C J, ROBERTS J M. Living with or without cyclins and cyclin-dependent kinases [J]. Genes Dev, 2004, 18(22): 2699-2711. doi:10.1101/gad.1256504
doi: 10.1101/gad.1256504
|
23 |
ALAO J P, GAMBLE S C, STAVROPOULOU A V, et al. The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines [J]. Mol Cancer, 2006, 5:7. doi:10.1186/1476-4598-5-7
doi: 10.1186/1476-4598-5-7
|
24 |
TCHAKARSKA G, SOLA B. The double dealing of cyclin D1 [J]. Cell Cycle, 2020, 19(2):163-178. doi:10.1080/15384101.2019.1706903
doi: 10.1080/15384101.2019.1706903
|
25 |
PESTELL R G. New roles of cyclin D1 [J]. Am J Pathol, 2013, 183(1): 3-9. doi:10.1016/j.ajpath.2013.03.001
doi: 10.1016/j.ajpath.2013.03.001
|
26 |
LIU G X, LI YQ, HUANG X R, et al. Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension [J]. Clin Sci (Lond), 2014, 127(3): 195-208. doi:10.1042/cs20130706
doi: 10.1042/cs20130706
|
27 |
FU S, TANG Y, HUANG X R, et al. Smad7 protects against acute kidney injury by rescuing tubular epithelial cells from the G1 cell cycle arrest [J]. Clin Sci (Lond), 2017, 131(15): 1955-1969. doi:10.1042/cs20170127
doi: 10.1042/cs20170127
|
28 |
LIS P, DYLĄG M, NIEDŹWIECKA K, et al. The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate [J]. Molecules, 2016, 21(12): 1730. doi:10.3390/molecules21121730
doi: 10.3390/molecules21121730
|
29 |
BELLOMO R, KELLUM J A, RONCO C. Acute kidney injury [J]. Lancet, 2012, 380(9843): 756-766. doi:10.1016/s0140-6736(11)61454-2
doi: 10.1016/s0140-6736(11)61454-2
|
30 |
ALI T, KHAN I, SIMPSON W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study [J]. J Am Soc Nephrol, 2007, 18(4): 1292-1298. doi:10.1681/asn.2006070756
doi: 10.1681/asn.2006070756
|
31 |
PAGLIARINI D J, CALVO S E, CHANG B, et al. A mitochondrial protein compendium elucidates complex I disease biology [J]. Cell, 2008, 134(1): 112-123. doi:10.1016/j.cell.2008.06.016
doi: 10.1016/j.cell.2008.06.016
|
32 |
O'CONNOR P M. Renal oxygen delivery: matching delivery to metabolic demand [J]. Clin Exp Pharmacol Physiol, 2006, 33(10): 961-967. doi:10.1111/j.1440-1681.2006.04475.x
doi: 10.1111/j.1440-1681.2006.04475.x
|
33 |
SUN J, ZHANG J, TIAN J, et al. Mitochondria in Sepsis-Induced AKI [J]. J Am Soc Nephrol, 2019, 30(7): 1151-1161. doi:10.1681/asn.2018111126
doi: 10.1681/asn.2018111126
|
34 |
JIANG M, BAI M, LEI J, et al. Mitochondrial dysfunction and the AKI-to-CKD transition [J]. Am J Physiol Renal Physiol, 2020, 319(6): F1105-F1116. doi:10.1152/ajprenal.00285.2020
doi: 10.1152/ajprenal.00285.2020
|
35 |
RYOO S M, LEE J, LEE Y S, et al. Lactate Level Versus Lactate Clearance for Predicting Mortality in Patients With Septic Shock Defined by Sepsis-3 [J]. Crit Care Med, 2018, 46(6): e489-e495. doi:10.1097/ccm.0000000000003030
doi: 10.1097/ccm.0000000000003030
|
36 |
ZAGER R A, JOHNSON A C, BECKER K. Renal cortical pyruvate depletion during AKI [J]. J Am Soc Nephrol, 2014, 25(5): 998-1012. doi:10.1681/asn.2013070791
doi: 10.1681/asn.2013070791
|
37 |
ZAGER R A, JOHNSON A C, NAITO M, et al. Maleate nephrotoxicity: mechanisms of injury and correlates with ischemic/hypoxic tubular cell death [J]. Am J Physiol Renal Physiol, 2008, 294(1): F187-197. doi:10.1152/ajprenal.00434.2007
doi: 10.1152/ajprenal.00434.2007
|