实用医学杂志 ›› 2024, Vol. 40 ›› Issue (15): 2194-2198.doi: 10.3969/j.issn.1006-5725.2024.15.026
• 综述 • 上一篇
收稿日期:
2024-02-25
出版日期:
2024-08-10
发布日期:
2024-07-30
通讯作者:
谢国钢
E-mail:freeman811@163.com
基金资助:
Jiao XU1,Min ZHANG2,Guogang. XIE2()
Received:
2024-02-25
Online:
2024-08-10
Published:
2024-07-30
Contact:
Guogang. XIE
E-mail:freeman811@163.com
摘要:
肥大细胞衍生的外泌体携带泛肥大细胞标记物IgE免疫球蛋白高亲和受体(FcεRI)和SCF受体c-kit,富含鞘磷脂、脂质相关蛋白,可装载MHC-II分子,能将功能性mRNA和miRNA转移到受体CD34+祖细胞和肥大细胞。活化的肥大细胞来源的外泌体含有大量的功能性肥大细胞特异性介质,而且可能在大小、蛋白质、脂质以及RNA和DNA含量上有所不同。肥大细胞外泌体可募集B细胞和T细胞到肺中发挥作用,具有调节免疫功能,诱导其他哮喘相关细胞的启动和激活的潜能。与气道平滑肌细胞相互作用并诱导其释放促炎细胞因子,使哮喘症状持续存在。存在于肥大细胞衍生的外泌体上的免疫复合物(IgE和抗原)通过自我放大机制加剧局部过敏反应,可将抗原传递给其他免疫细胞。肥大细胞来源的外泌体可能是治疗支气管哮喘的潜在靶点,其提纯和优化改良尚需进一步研究。本文将对来源于肥大细胞的外泌体在支气管哮喘发病机制方面的研究进行综述,为支气管哮喘的防治提供新思路。
中图分类号:
许姣,张旻,谢国钢. 肥大细胞来源的外泌体在支气管哮喘中的研究进展[J]. 实用医学杂志, 2024, 40(15): 2194-2198.
Jiao XU,Min ZHANG,Guogang. XIE. Research progress of mast cell⁃derived exosomes in bronchial asthma[J]. The Journal of Practical Medicine, 2024, 40(15): 2194-2198.
1 | 李竹英,王婷,李寒梅. 外泌体在支气管哮喘发病机制中的作用[J]. 中华全科医学, 2020,18(2):291-294. |
2 |
PORSBJERG C, MELEN E, LEHTIMAKI L, et al. Asthma[J]. Lancet, 2023, 401(10379): 858-873. doi:10.1016/s0140-6736(22)02125-0
doi: 10.1016/s0140-6736(22)02125-0 |
3 |
STERN J, PIER J, LITONJUA A. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. doi:10.1007/s00281-020-00785-1
doi: 10.1007/s00281-020-00785-1 |
4 |
HUANG K, YANG T, XU J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407-418. doi:10.1016/s0140-6736(19)31147-x
doi: 10.1016/s0140-6736(19)31147-x |
5 |
GARNER O, RAMEY J S, HANANIA N A. Management of Life-Threatening Asthma: Severe Asthma Series[J]. Chest, 2022, 162(4): 747-756. doi:10.1016/j.chest.2022.02.029
doi: 10.1016/j.chest.2022.02.029 |
6 |
BARMAN B, SUNG B H, KRYSTOFIAK E, et al.VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites[J]. Dev Cell, 2022, 57(8): 974-994.e8. doi:10.1016/j.devcel.2022.03.012
doi: 10.1016/j.devcel.2022.03.012 |
7 |
BUZAS E I. The roles of extracellular vesicles in the immune system[J]. Nat Rev Immunol, 2023, 23(4): 236-250. doi:10.1038/s41577-022-00763-8
doi: 10.1038/s41577-022-00763-8 |
8 |
姚培学,郭小旭,贺艳飞,等. 外泌体microRNAs作为肺部疾病诊断性生物标志物的研究进展[J]. 实用医学杂志,2020,36(13):1839-1843. doi:10.3969/j.issn.1006-5725.2020.13.030
doi: 10.3969/j.issn.1006-5725.2020.13.030 |
9 |
D'INCÀ F, PUCILLO C E. Exosomes: tiny clues for mast cell communication[J]. Front Immunol, 2015, 6: 73. doi:10.3389/fimmu.2015.00073
doi: 10.3389/fimmu.2015.00073 |
10 |
RAPOSO G, NIJMAN H W, STOORVOGEL W, et al. B lympho- cytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183:1161-1672. doi:10.1084/jem.183.3.1161
doi: 10.1084/jem.183.3.1161 |
11 |
MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. doi:10.1038/s41556-018-0250-9
doi: 10.1038/s41556-018-0250-9 |
12 |
VAN NIEL G, CARTER D R F, CLAYTON A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 369-382. doi:10.1038/s41580-022-00460-3
doi: 10.1038/s41580-022-00460-3 |
13 |
KEERTHIKUMAR S, CHISANGA D, ARIYARATNE D, et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo[J]. J Mol Biol,2016, 428(4): 688-692. doi:10.1016/j.jmb.2015.09.019
doi: 10.1016/j.jmb.2015.09.019 |
14 |
CANAS J A, SASTRE B, RODRIGO-MUNOZ J M, et al. Exosomes: A new approach to asthma pathology[J]. Clin Chim Acta, 2019, 495: 139-147. doi:10.1016/j.cca.2019.04.055
doi: 10.1016/j.cca.2019.04.055 |
15 |
XIAO H, LÄSSER C, SHELKE G V, et al. Mast cell exosomes promote lung adenocarcinoma cell proliferation - role of KIT-stem cell factor signaling[J]. Cell Commun Signal, 2014, 12:64. doi:10.1186/preaccept-1817458803126023
doi: 10.1186/preaccept-1817458803126023 |
16 |
OSTEIKOETXEA X, BALOGH A, SZABÓ-TAYLOR K, et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties[J]. PLoS One, 2015, 10(3):e0121184. doi:10.1371/journal.pone.0121184
doi: 10.1371/journal.pone.0121184 |
17 |
LAULAGNIER K, MOTTA C, HAMDI S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization[J]. Biochem J, 2004, 380(Pt 1):161-171. doi:10.1042/bj20031594
doi: 10.1042/bj20031594 |
18 |
CHEUNG K L, JARRETT R, SUBRAMANIAM S, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a[J]. J Exp Med, 2016, 213(11):2399-2412. doi:10.1084/jem.20160258
doi: 10.1084/jem.20160258 |
19 |
SKOKOS D, GOUBRAN-BOTROS H, ROA M, et al.Immunoregulatory properties of mast cell-derived exosomes[J]. Mol Immunol. 2002,38(16-18):1359-1362. doi:10.1016/s0161-5890(02)00088-3
doi: 10.1016/s0161-5890(02)00088-3 |
20 |
SKOKOS D, LE PANSE S, VILLA I, et al. Nonspecific B and T cell-stimulatory activity mediated by mast cells is associated with exosomes[J]. Int Arch Allergy Immunol, 2001,124(1-3):133-136. doi:10.1159/000053691
doi: 10.1159/000053691 |
21 |
VINCENT-SCHNEIDER H, THÉRY C, MAZZEO D, et al. Secretory granules of mast cells accumulate mature and immature MHC class Ⅱ molecules[J]. J Cell Sci, 2001, 114(Pt 2) 323-334. doi:10.1242/jcs.114.2.323
doi: 10.1242/jcs.114.2.323 |
22 |
GALLI S J, NAKAE S, TSAI M. Mast cells in the development of adaptive immune responses[J]. Nat Immunol, 2005, 6(2):135-142. doi:10.1038/ni1158
doi: 10.1038/ni1158 |
23 |
EKSTRÖM K, VALADI H, SJÖSTRAND M, et al. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells[J]. J Extracell Vesicle,2012,16:1. doi:10.3402/jev.v1i0.18389
doi: 10.3402/jev.v1i0.18389 |
24 |
GROOT KORMELINK T,MOL S, DE JONG E C, et al.The role of extracellular vesicles when innate meets adaptive[J]. Semin Immunopathol,2018, 40(5): 439-452. doi:10.1007/s00281-018-0681-1
doi: 10.1007/s00281-018-0681-1 |
25 |
LECCE M, MOLFETTA R, MILITO N D, et al. FcepsilonRI Signaling in the Modulation of Allergic Response: Role of Mast Cell-Derived Exosomes[J]. Int J Mol Sci, 2020, 21(15):5464. doi:10.3390/ijms21155464
doi: 10.3390/ijms21155464 |
26 |
GROOT KORMELINK T, ARKESTEIJN G J, VAN DE LEST C H, et al. Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell-Specific Proteases[J]. J Immunol,2016, 197(8): 3382-3392. doi:10.4049/jimmunol.1600614
doi: 10.4049/jimmunol.1600614 |
27 |
LIANG Y, HUANG S, QIAO L, et al. Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells[J]. J Extracell Vesicles, 2020, 9(1): 1697583. doi:10.1080/20013078.2019.1697583
doi: 10.1080/20013078.2019.1697583 |
28 |
KOMI D E A, RAMBASEK T, WÖHRL S. Mastocytosis: from a Molecular Point of View[J]. Clin Rev Allergy Immunol, 2018, 54(3): 397-411. doi:10.1007/s12016-017-8619-2
doi: 10.1007/s12016-017-8619-2 |
29 |
MANORAK W, IDAHOSA C, GUPTA K,et al. Upregulation of Mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1[J]. Respir Res, 2018,19(1):1. doi:10.1186/s12931-017-0698-3
doi: 10.1186/s12931-017-0698-3 |
30 |
ALTMAN M C, LAI Y, NOLIN J D, et al. Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling[J]. J Clin Invest, 2019, 129(11):4979-4991. doi:10.1172/jci126402
doi: 10.1172/jci126402 |
31 |
AGIER J, PASTWIŃSKA J, BRZEZIŃSKA-BLASZCZYK E.An overview of mast cell pattern recognition receptors[J]. Inflamm Res, 2018,67(9):737-746. doi:10.1007/s00011-018-1164-5
doi: 10.1007/s00011-018-1164-5 |
32 |
HUANG F, JIA H, ZOU Y, et al. Exosomes: an important messenger in the asthma inflammatory microenvironment[J]. J Int Med Res, 2020, 48(2): 300060520903220. doi:10.1177/0300060520903220
doi: 10.1177/0300060520903220 |
33 |
XIA YC, HARRIS T, STEWART A G, et al.Secreted Factors from Human Mast Cells Trigger Inflammatory Cytokine Production by Human Airway Smooth Muscle Cells[J]. Int Arch Allergy Immunol, 2013, 160(1): 75-85. doi:10.1159/000339697
doi: 10.1159/000339697 |
34 |
MOLFETTA R, LECCE M, QUATRINI L, et al.Immune complexes exposed on mast cell-derived nanovesicles amplify allergic inflammation[J]. Allergy, 2020, 75(5): 1260-1263. doi:10.1111/all.14103
doi: 10.1111/all.14103 |
35 |
XIE G, YANG H, PENG X, et al. Mast cell exosomes can suppress allergic reactions by binding to IgE[J]. J Allergy Clin Immunol, 2018, 141(2): 788-791. doi:10.1016/j.jaci.2017.07.040
doi: 10.1016/j.jaci.2017.07.040 |
36 |
LI F, WANG Y, LIN L, et al. Mast Cell-Derived Exosomes Promote Th2 Cell Differentiation via OX40L-OX40 Ligation[J]. J Immunol Res, 2016, 2016: 3623898. doi:10.1155/2016/3623898
doi: 10.1155/2016/3623898 |
37 |
PRADO N, CAÑAMERO M, VILLALBA M, et al.Bystander suppression to unrelated allergen sensitization through intranasal administration of tolerogenic exosomes in mouse[J]. Mol Immunol, 2010, 47(11/12): 2148-2151. doi:10.1016/j.molimm.2010.04.014
doi: 10.1016/j.molimm.2010.04.014 |
38 |
PRADO N, MARAZUELA E G, SEGURA E, et al.Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction[J]. J Immunol, 2008, 181(2): 1519-1525. doi:10.4049/jimmunol.181.2.1519
doi: 10.4049/jimmunol.181.2.1519 |
39 |
FRANCISCO-GARCIA A S, GARRIDO-MARTíN E M, RUPANI H, et al. Small RNA Species and microRNA Profiles are Altered in Severe Asthma Nanovesicles from Broncho Alveolar Lavage and Associate with Impaired Lung Function and Inflammation[J]. Noncoding RNA, 2019, 5(4):51. doi:10.3390/ncrna5040051
doi: 10.3390/ncrna5040051 |
40 |
ZHAO M, JUANJUAN L, WEIJIA F, et al. Expression Levels of MicroRNA-125b in Serum Exosomes of Patients with Asthma of Different Severity and its Diagnostic Significance[J]. Curr Drug Metab, 2019, 20(10):781-784. doi:10.2174/1389200220666191021100001
doi: 10.2174/1389200220666191021100001 |
41 |
ZHAO M, LI Y P, GENG X R, et al. Expression Level of MiRNA-126 in Serum Exosomes of Allergic Asthma Patients and Lung Tissues of Asthmatic Mice[J]. Curr Drug Meta,2019, 20(10):799-803. doi:10.2174/1389200220666191011114452
doi: 10.2174/1389200220666191011114452 |
42 |
BAHMER T, KRAUSS-ETSCHMANN S, BUSCHMANN D, et al. RNA-seq-based profiling of extracellular vesicles in plasma reveals a potential role of miR-122-5p in asthma[J]. Allergy, 2021,76(1):366-371. doi:10.1111/all.14486
doi: 10.1111/all.14486 |
43 |
陈倩,唐秋萍. 循环血浆外泌体及其应用研究进展[J]. 实用医学杂志,2023,39(15):1998-2003. doi:10.3969/j.issn.1006-5725.2023.15.024
doi: 10.3969/j.issn.1006-5725.2023.15.024 |
44 |
侯勇哲,张琴,赵霄晨,等. 间充质干细胞来源的胞外囊泡在急性肺损伤治疗中的研究进展[J]. 实用医学杂志,2023,39(3):390-394. doi:10.3969/j.issn.1006-5725.2023.03.023
doi: 10.3969/j.issn.1006-5725.2023.03.023 |
45 | 黄宁,胡长平. 外泌体在肺部疾病中的研究进展[J]. 中国药理学通报,2023,39(11):2006-2011. |
[1] | 刘景,冷春涛,王艳. circRNA SIPA1L1修饰牙髓干细胞来源外泌体促血管生成能力的机制[J]. 实用医学杂志, 2024, 40(9): 1211-1217. |
[2] | 陈甫,刘斌,和帅军,赵勇,王伟周. 男性不育患者精液质量与精浆微量元素水平及精浆外泌体miR-184水平的关系[J]. 实用医学杂志, 2024, 40(7): 930-935. |
[3] | 肖俐,罗淑敏,徐芳,路鹏鹏,邢恩鸿,李伟华. 培养时间对小鼠树突状细胞及其外泌体免疫相关膜蛋白的影响[J]. 实用医学杂志, 2024, 40(7): 941-947. |
[4] | 程玉鑫,刘亮,董适毓,李胜超,张萌. 外泌体蛋白、mRNA及非编码RNA调节肝癌发生和发展的研究进展[J]. 实用医学杂志, 2024, 40(6): 748-755. |
[5] | 陈舒,张静蕾,荣康,张楠,孙维义. 外泌体在胃癌远处转移和耐药性中的研究进展[J]. 实用医学杂志, 2024, 40(6): 870-876. |
[6] | 王君灵,湛萌萌,张钊龙,何韶衡,秦秉玉. 肥大细胞在脓毒症中的作用研究进展[J]. 实用医学杂志, 2024, 40(5): 596-600. |
[7] | 罗青,黄金金,任婷婷,周瑞华,徐栋花,王振华,王国颖. 人脐带干细胞外泌体对人毛乳头细胞增殖的影响[J]. 实用医学杂志, 2024, 40(20): 2828-2834. |
[8] | 杨昌恒,陈颖,张中元,马庆庆. 肺泡灌洗液外泌体表皮生长因子受体基因突变检测对晚期非小细胞肺癌患者的临床意义[J]. 实用医学杂志, 2024, 40(1): 48-52. |
[9] | 郝剑 韩磊 . 血清外泌体microRNAs 单一及组合panel 对结直肠癌的诊断价值 [J]. 实用医学杂志, 2023, 39(3): 364-373. |
[10] | 侯勇哲, 张琴 赵霄晨 何苗 鱼玲玲, 白海 吴涛 . 间充质干细胞来源的胞外囊泡在急性肺损伤治疗中的研究进展 [J]. 实用医学杂志, 2023, 39(3): 390-394. |
[11] | 谢丹,欧阳石. 茵陈蒿汤协同脐带间充质干细胞所释放的外泌体对急性肝衰竭及肝细胞焦亡的影响[J]. 实用医学杂志, 2023, 39(23): 3034-3042. |
[12] | 金舒文,刘伟,刘嘉宝,范建超,韩永丽,周丽,徐派的,张红星. 基于NGF/TrKA/TRPV1通路探讨电针改善功能性消化不良大鼠胃高敏感性[J]. 实用医学杂志, 2023, 39(22): 2928-2933. |
[13] | 罗富强, 余电柏, 谢康麒, 李载永, 周海东, 罗昌泰, 韦积华. 糖尿病足溃疡创面修复相关机制的研究进展[J]. 实用医学杂志, 2023, 39(2): 158-163. |
[14] | 崔兰兰,张革,徐邦牢. 牙龈卟啉单胞菌感染性食管鳞癌细胞外泌体蛋白组学分析[J]. 实用医学杂志, 2023, 39(17): 2171-2175. |
[15] | 艾丽菲热·买买提,高静,于子翔,马依彤. 肺动脉平滑肌细胞外泌体上调miR-106b-5p增强肺动脉内皮细胞Warburg效应促进动脉型肺动脉高压的分子机制[J]. 实用医学杂志, 2023, 39(17): 2190-2195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||