实用医学杂志 ›› 2024, Vol. 40 ›› Issue (5): 596-600.doi: 10.3969/j.issn.1006-5725.2024.05.002
收稿日期:
2023-12-01
出版日期:
2024-03-10
发布日期:
2024-03-26
通讯作者:
秦秉玉
E-mail:nicolasby@126.com
作者简介:
基金资助:
Junling WANG1,2,Mengmeng ZHAN1,Zhaolong ZHANG1,Shaoheng HE2,Bingyu. QIN1()
Received:
2023-12-01
Online:
2024-03-10
Published:
2024-03-26
Contact:
Bingyu. QIN
E-mail:nicolasby@126.com
摘要:
脓毒症是机体对感染的失控反应所导致可以威胁生命的器官功能障碍。组织肥大细胞(mast cell,MC)作为炎症反应的经典效应细胞之一,由血液肥大细胞前体细胞发育而来,可通过分泌多种炎症介质和细胞因子,从而在脓毒症发生发展中发挥重要作用。我们对MC在脓毒症中的潜在作用做一总结,为探索MC在脓毒症中的新机制提供新思路。
中图分类号:
王君灵,湛萌萌,张钊龙,何韶衡,秦秉玉. 肥大细胞在脓毒症中的作用研究进展[J]. 实用医学杂志, 2024, 40(5): 596-600.
Junling WANG,Mengmeng ZHAN,Zhaolong ZHANG,Shaoheng HE,Bingyu. QIN. The research progress of the actions of mast cells in sepsis[J]. The Journal of Practical Medicine, 2024, 40(5): 596-600.
1 | SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. |
2 |
蒋龙元. 免疫紊乱在脓毒症中的作用[J]. 实用医学杂志,2021,37(6):701-704. doi:10.3969/j.issn.1006-5725.2021.06.001
doi: 10.3969/j.issn.1006-5725.2021.06.001 |
3 |
PRESCOTT H C, ANGUS D C. Enhancing Recovery From Sepsis: A Review[J]. JAMA, 2018, 319(1): 62-75. doi:10.1001/jama.2017.17687
doi: 10.1001/jama.2017.17687 |
4 |
GALLI S J, GAUDENZIO N, TSAI M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns[J]. Annu Rev Immunol, 2020, 38: 49-77. doi:10.1146/annurev-immunol-071719-094903
doi: 10.1146/annurev-immunol-071719-094903 |
5 |
JIMENEZ M, CERVANTES-GARCIA D, CORDOVA-DAVALOS L E, et al. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles[J]. Front Immunol, 2021, 12: 685865. doi:10.3389/fimmu.2021.685865
doi: 10.3389/fimmu.2021.685865 |
6 |
ELIEH ALI KOMI D, KUEBLER W M. Significance of Mast Cell Formed Extracellular Traps in Microbial Defense[J]. Clin Rev Allergy Immunol, 2022, 62(1): 160-179. doi:10.1007/s12016-021-08861-6
doi: 10.1007/s12016-021-08861-6 |
7 |
WOZNIAK E, OWCZARCZYK-SACZONEK A, LANGE M, et al. The Role of Mast Cells in the Induction and Maintenance of Inflammation in Selected Skin Diseases[J]. Int J Mol Sci, 2023, 24(8):7021. doi:10.3390/ijms24087021
doi: 10.3390/ijms24087021 |
8 |
RIBATTI D. Mast Cells and Resistance to Immunotherapy in Cancer[J]. Arch Immunol Ther Exp (Warsz), 2023, 71(1): 11. doi:10.1007/s00005-023-00676-x
doi: 10.1007/s00005-023-00676-x |
9 |
VAN DER ELST G, VAROL H, HERMANS M, et al. The mast cell: A Janus in kidney transplants[J]. Front Immunol, 2023, 14: 1122409. doi:10.3389/fimmu.2023.1183969
doi: 10.3389/fimmu.2023.1183969 |
10 |
STEVENS W W, KRAFT M, EISENBARTH S C. Recent insights into the mechanisms of anaphylaxis[J]. Curr Opin Immunol, 2023, 81: 102288. doi:10.1016/j.coi.2023.102288
doi: 10.1016/j.coi.2023.102288 |
11 |
ELIEH ALI KOMI D, WöHRL S, BIELORY L. Mast Cell Biology at Molecular Level: a Comprehensive Review[J]. Clin Rev Allergy Immunol: a Comprehensive Review, 2020, 58(3): 342-365. doi:10.1007/s12016-019-08769-2
doi: 10.1007/s12016-019-08769-2 |
12 |
GALLI S J, KALESNIKOFF J, GRIMBALDESTON M A, et al. Mast cells as "tunable" effector and immunoregulatory cells: recent advances[J]. Annu Rev Immunol, 2005, 23: 749-786. doi:10.1146/annurev.immunol.21.120601.141025
doi: 10.1146/annurev.immunol.21.120601.141025 |
13 |
DAHLIN J S, MALINOVSCHI A, OHRVIK H, et al. Lin- CD34hi CD117int/hi FcepsilonRI+ cells in human blood constitute a rare population of mast cell progenitors[J]. Blood, 2016, 127(4): 383-391. doi:10.1182/blood-2015-06-650648
doi: 10.1182/blood-2015-06-650648 |
14 |
WU C, BOEY D, BRIL O, et al. Single-cell transcriptomics reveals the identity and regulators of human mast cell progenitors[J]. Blood Advances, 2022, 6(15): 4439-4449. doi:10.1182/bloodadvances.2022006969
doi: 10.1182/bloodadvances.2022006969 |
15 |
BONE-LARSON C L, HOGABOAM C M, STEINHAUSER M L, et al. Novel protective effects of stem cell factor in a murine model of acute septic peritonitis. Dependence on MCP-1[J]. Am J Pathol, 2000, 157(4): 1177-1186. doi:10.1016/s0002-9440(10)64633-0
doi: 10.1016/s0002-9440(10)64633-0 |
16 |
TEEGALA L R, ELSHOWEIKH Y, GUDNEPPANAVAR R, et al. Protein Kinase C α and β compensate for each other to promote stem cell factor-mediated KIT phosphorylation, mast cell viability and proliferation[J]. FASEB J, 2022, 36(5): e22273. doi:10.1096/fj.202101838rrr
doi: 10.1096/fj.202101838rrr |
17 |
DERAKHSHAN T, BOYCE J A, DWYER D F. Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis[J].J Allergy Clin Immunol, 2022, 150(4): 739-747. doi:10.1016/j.jaci.2022.08.011
doi: 10.1016/j.jaci.2022.08.011 |
18 |
NULLENS S, DE MAN J, BRIDTS C, et al. Identifying Therapeutic Targets for Sepsis Research: A Characterization Study of the Inflammatory Players in the Cecal Ligation and Puncture Model[J]. Mediators Inflamm, 2018, 2018: 5130463. doi:10.1155/2018/5130463
doi: 10.1155/2018/5130463 |
19 |
ELIEH ALI KOMI D, KUEBLER W M. Significance of Mast Cell Formed Extracellular Traps in Microbial Defense[J]. Clin Rev Allergy Immunol, 2022, 62(1): 160-179. doi:10.1007/s12016-021-08861-6
doi: 10.1007/s12016-021-08861-6 |
20 |
DI NARDO A, VITIELLO A, GALLO R L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide[J]. J Immunol, 2003, 170(5): 2274-2278. doi:10.4049/jimmunol.170.5.2274
doi: 10.4049/jimmunol.170.5.2274 |
21 |
STOVER C M, LUCKETT J C, ECHTENACHER B, et al. Properdin plays a protective role in polymicrobial septic peritonitis[J]. J Immunol, 2008, 180(5): 3313-3318. doi:10.4049/jimmunol.180.5.3313
doi: 10.4049/jimmunol.180.5.3313 |
22 |
WEI O L, HILLIARD A, KALMAN D, et al. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium[J]. Infect Immun, 2005, 73(4): 1978-1985. doi:10.1128/iai.73.4.1978-1985.2005
doi: 10.1128/iai.73.4.1978-1985.2005 |
23 |
SHELLEY O, MURPHY T, LEDERER J A, et al. Mast cells and resistance to peritoneal sepsis after burn injury[J]. Shock, 2003, 19(6): 513-518. doi:10.1097/.01.shk0000055239.25446.2d
doi: 10.1097/.01.shk0000055239.25446.2d |
24 |
ABRAHAM S N, JOHN A L ST. Mast cell-orchestrated immunity to pathogens[J]. Nat Rev Immunol, 2010, 10(6): 440-452. doi:10.1038/nri2782
doi: 10.1038/nri2782 |
25 |
ELIEH ALI KOMI D, WOHRL S, BIELORY L. Mast Cell Biology at Molecular Level: a Comprehensive Review[J]. Clin Rev Allergy Immunol, 2020, 58(3): 342-365. doi:10.1007/s12016-019-08769-2
doi: 10.1007/s12016-019-08769-2 |
26 |
PILIPONSKY A M, CHEN C C, NISHIMURA T, et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis[J]. Nat Med, 2008, 14(4): 392-398. doi:10.1038/nm1738
doi: 10.1038/nm1738 |
27 |
MAURER M, WEDEMEYER J, METZ M, et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity[J]. Nature, 2004, 432(7016): 512-516. doi:10.1038/nature03085
doi: 10.1038/nature03085 |
28 |
PILIPONSKY A M, ACHARYA M, SHUBIN N J. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity[J]. Int J Mol Sci, 2019, 20(12):2851. doi:10.3390/ijms20122851
doi: 10.3390/ijms20122851 |
29 |
ORINSKA Z, MAURER M, MIRGHOMIZADEH F, et al. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities[J]. Nat Med, 2007, 13(8): 927-934. doi:10.1038/nm1615
doi: 10.1038/nm1615 |
30 |
HEUER J G, ZHANG T, ZHAO J, et al. Adoptive transfer of in vitro-stimulated CD4+CD25+ regulatory T cells increases bacterial clearance and improves survival in polymicrobial sepsis[J]. J Immunol, 2005, 174(11): 7141-7146. doi:10.4049/jimmunol.174.11.7141
doi: 10.4049/jimmunol.174.11.7141 |
31 |
CARVALHO M, BENJAMIM C, SANTOS F, et al. Effect of mast cells depletion on the failure of neutrophil migration during sepsis[J]. Eur J Pharmacol, 2005, 525(1/3): 161-169. doi:10.1016/j.ejphar.2005.09.049
doi: 10.1016/j.ejphar.2005.09.049 |
32 |
SALINAS E, QUINTANAR J L, RAMIREZ-CELIS N A, et al. Allergen-sensitization in vivo enhances mast cell-induced inflammatory responses and supports innate immunity[J]. Immunol Lett, 2009, 127(1): 48-54. doi:10.1016/j.imlet.2009.08.012
doi: 10.1016/j.imlet.2009.08.012 |
33 |
NAUTIYAL K M, MCKELLAR H, SILVERMAN A J, et al. Mast cells are necessary for the hypothermic response to LPS-induced sepsis[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296(3): R595-602. doi:10.1152/ajpregu.90888.2008
doi: 10.1152/ajpregu.90888.2008 |
34 |
DAHDAH A, GAUTIER G, ATTOUT T, et al. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis[J]. J Clin Invest, 2014, 124(10): 4577-4589. doi:10.1172/jci75212
doi: 10.1172/jci75212 |
35 |
CAUGHEY G H. Mast cell proteases as protective and inflammatory mediators[J]. Adv Exp Med Biol, 2011, 716: 212-234. doi:10.1007/978-1-4419-9533-9_12
doi: 10.1007/978-1-4419-9533-9_12 |
36 |
MALLEN-ST CLAIR J, PHAM C T, VILLALTA S A, et al. Mast cell dipeptidyl peptidase I mediates survival from sepsis[J]. J Clin Invest, 2004, 113(4): 628-634. doi:10.1172/jci19062
doi: 10.1172/jci19062 |
37 |
DAHDAH A, GAUTIER G, ATTOUT T, et al. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis[J]. J Clin Invest, 2014, 124(10): 4577-4589. doi:10.1172/jci75212
doi: 10.1172/jci75212 |
38 |
SIEBECK M, HOFFMANN H, JOCHUM M, et al. Inhibition of proteinases with recombinant eglin C during experimental Escherichia coli septicemia in the pig[J]. Eur Surg Res, 1989, 21(1): 11-17. doi:10.1159/000128998
doi: 10.1159/000128998 |
39 |
SEELEY E J, SUTHERLAND R E, KIM S S, et al. Systemic mast cell degranulation increases mortality during polymicrobial septic peritonitis in mice[J]. J Leukoc Biol, 2011, 90(3): 591-597. doi:10.1189/jlb.0910531
doi: 10.1189/jlb.0910531 |
40 |
ZHANG Y J, LI M, MENG M, et al. The effect of ulinastatin on the small intestine injury and mast cell degranulation in a rat model of sepsis induced by CLP[J]. Exp Toxicol Pathol, 2009, 61(5): 481-490. doi:10.1016/j.etp.2008.07.007
doi: 10.1016/j.etp.2008.07.007 |
41 |
YU H, LIU Y, WANG M, et al. Myeloperoxidase instigates proinflammatory responses in a cecal ligation and puncture rat model of sepsis[J]. Am J Physiol Heart Circ Physiol, 2020, 319(3): H705-H721. doi:10.1152/ajpheart.00440.2020
doi: 10.1152/ajpheart.00440.2020 |
42 |
HOLLMANN T J, MUELLER-ORTIZ S L, BRAUN M C, et al. Disruption of the C5a receptor gene increases resistance to acute Gram-negative bacteremia and endotoxic shock: opposing roles of C3a and C5a[J]. Mol Immunol, 2008, 45(7): 1907-1915. doi:10.1016/j.molimm.2007.10.037
doi: 10.1016/j.molimm.2007.10.037 |
43 |
YUE J, TAN Y, HUAN R, et al. Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway[J]. Front Immunol, 2023, 14: 1090288. doi:10.3389/fimmu.2023.1090288
doi: 10.3389/fimmu.2023.1090288 |
44 |
DUBAYLE D, HERON A. Decrease of cerebral mast cell degranulation after systemic administration of lipopolysaccharide[J]. Inflamm Res, 2012, 61(12): 1295-1297. doi:10.1007/s00011-012-0565-0
doi: 10.1007/s00011-012-0565-0 |
45 |
RONNBERG E, JOHNZON C F, CALOUNOVA G, et al. Mast cells are activated by Staphylococcus aureus in vitro but do not influence the outcome of intraperitoneal S. aureus infection in vivo[J]. Immunology, 2014, 143(2): 155-163. doi:10.1111/imm.12297
doi: 10.1111/imm.12297 |
[1] | 王仙琦,张斌,张琪,代铮,张锦鑫,梁晓丽,李琳,吴林,刘善收. 基于单细胞测序分析脓毒症早期血小板数量和功能变化[J]. 实用医学杂志, 2024, 40(9): 1218-1224. |
[2] | 王加栋,黄方舟,黄艳,陈管雄,刘军,黄佩琦. Eupatilin通过Sesn2-Nrf2保护线粒体功能在脓毒症脑损伤中的作用[J]. 实用医学杂志, 2024, 40(5): 601-607. |
[3] | 周颖,蒋大军,田勇,古雍翔,杨国辉. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志, 2024, 40(5): 608-614. |
[4] | 杨波,金肇权. 西维来司他钠联合乌司他丁治疗脓毒症所致急性呼吸窘迫综合征的临床疗效[J]. 实用医学杂志, 2024, 40(5): 621-626. |
[5] | 吴广平,尹鑫,何健卓,郭力恒. 心脉隆注射液对脓毒症休克患者微循环的影响[J]. 实用医学杂志, 2024, 40(5): 627-631. |
[6] | 戴成才,程振兴,涂倩倩. 血清胱抑素C联合床旁肾脏超声对脓毒症急性肾损伤患者预后情况的评估价值[J]. 实用医学杂志, 2024, 40(22): 3226-3231. |
[7] | 武周游,李婷,张腾伟,房巧燕,杨刘,黎巧. 羟基壬烯醛通过抑制内皮细胞焦亡减轻新生儿脓毒症诱导的急性肺损伤[J]. 实用医学杂志, 2024, 40(2): 195-201. |
[8] | 耿方敏,贺元旦,李文娟,刘茜茜,张红微,陆章平,魏莲花. 不同DIC评分系统对脓毒症患者凝血功能障碍早期诊断和预后预测的价值[J]. 实用医学杂志, 2024, 40(2): 248-252. |
[9] | 唐立丽,王昕宇,张杰,赵悦,李小悦. m6A甲基化修饰在急性肾损伤中的研究进展[J]. 实用医学杂志, 2024, 40(2): 278-282. |
[10] | 蔡兴,马兴龙,周长健,谢鹏,沈松璇,缪宴梅,宋佳美,谢雷宇. 巨噬细胞糖酵解在脓毒症中的研究进展[J]. 实用医学杂志, 2024, 40(19): 2783-2788. |
[11] | 刘敏,陈喜云,吕建磊,冯洁. ALKBH5通过TRAF1/NF⁃κB通路减轻脓毒症心肌损伤的机制[J]. 实用医学杂志, 2024, 40(17): 2381-2389. |
[12] | 周峰,尹其翔,魏法星,林海敏,蔡华忠,陈义坤. 血清水通道蛋白1水平联合血管外肺水指数对脓毒症致急性呼吸窘迫综合征的价值[J]. 实用医学杂志, 2024, 40(17): 2483-2488. |
[13] | 蒋伟,王辉,黄中伟,黄新忠. 可溶性生长刺激表达基因2蛋白对脓毒症相关急性肾损伤的预测价值[J]. 实用医学杂志, 2024, 40(16): 2291-2297. |
[14] | 许姣,张旻,谢国钢. 肥大细胞来源的外泌体在支气管哮喘中的研究进展[J]. 实用医学杂志, 2024, 40(15): 2194-2198. |
[15] | 龙淳,毕红英,杨昌珍,王家锴,唐艳,刘旭. 大黄素上调Sirt2减轻脂多糖致RAW264.7细胞的氧化应激反应[J]. 实用医学杂志, 2024, 40(13): 1785-1790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||