1 |
OKA P, PARR H, BARBERIO B, et al. Global prevalence of irritable bowel syndrome according to Rome Ⅲ or Ⅳ criteria: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2020, 5(10):908-917. doi:10.1016/s2468-1253(20)30217-x
doi: 10.1016/s2468-1253(20)30217-x
|
2 |
LIU J, PENG R, TAN Q, et al. Proteomic analysis of rat colonic mucosa following acupuncture treatment for irritable bowel syndrome with diarrhea[J]. PLoS One, 2022, 17(9):e0273853. doi:10.1371/journal.pone.0273853
doi: 10.1371/journal.pone.0273853
|
3 |
SHAIDULLOV I F, SOROKINA D M, SITDIKOV F G, et al. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome[J]. BMC Gastroenterol, 2021, 21(1):37. doi:10.1186/s12876-021-01613-y
doi: 10.1186/s12876-021-01613-y
|
4 |
YAO J P, ZHAO Y, CHEN Y, et al. Effect of electroacupuncture on intestinal epithelial mucosal barrier function in rats with diar-rhea-predominant irritable bowel syndrome[J]. Acupunct Res, 2020,45(5):357-362.
|
5 |
ZIEGLER K, KERIMI A, POQUET L, et al. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters slc16a1 (mct1) and slc16a3 (mct4)[J]. Arch Biochem Biophys, 2016, 599:3-12. doi:10.1016/j.abb.2016.01.018
doi: 10.1016/j.abb.2016.01.018
|
6 |
CHANG G, ZHANG H, WANG Y, et al. Microbial community shifts elicit inflammation in the caecal mucosa via the GPR41/43 signalling pathway during subacute ruminal acidosis[J]. BMC Vet Res, 2019, 15(1):298. doi:10.1186/s12917-019-2031-5
doi: 10.1186/s12917-019-2031-5
|
7 |
WANG C M, HAN G H, MA S X. Effects of short-chain fatty acids on intestinal m-ucosal barrier[J]. Chin J Microecol, 2022,34(12):1471-1475.
|
8 |
YAP Y A, LEOD K H MC, KENZIE C I MC, et al. An acetate-yielding diet imprints an immune and anti-microbia-l programme against enteric infection[J]. Clin Transl Immunology, 2021, 10(1):e1233. doi:10.1002/cti2.1233
doi: 10.1002/cti2.1233
|
9 |
ZHAN K, WU H M, ZHENG H, et al. Alterations in gut microbiota-short-chain fatty acid axis in rats with diarrhea-predominant irritable bowel syndrome and the effect of sodium butyrate[J]. Chin J Comparat Med, 2023,33(9):16-24.
|
10 |
CHONG P P, CHIN V K, LOOI C Y, et al. The Microbiome and Irritable Bowel Syndrome-A Review on the Pathophysiology, Current Research and Future Therapy[J]. Front Microbiol, 2019, 10:1136. doi:10.3389/fmicb.2019.01870
doi: 10.3389/fmicb.2019.01870
|
11 |
YANG Z Y, GONG Z P, WANG Y J, et al. Comparison of pharmacokinetics after single and multiple oral administrations of Wuji Wan in irritable bowel syndrome rats[J]. Chin J Comparat Med, 2022,32(1):13-23.
|
12 |
SHIN A, XING Y, WASEEM M R, et al. Microbiota-Short Chain Fatty Acid Relationships and Microbial Substrate Preferences Vary Across the Spectrum of Irritable Bowel Syndrome (IBS)[J]. medRxiv, 2024:2024.01.31.24302084.
|
13 |
SUN Q H, LIU Z J, ZHANG L, et al. Sex-based differences in fecal short-chain fatty acid and gut microbiota in irritable bowel syndrome patients[J]. J Digest Dis, 2021, 22(5):246-255. doi:10.1111/1751-2980.12988
doi: 10.1111/1751-2980.12988
|
14 |
HUANG Y F, LIU X H, WU H, et al. The relationship between intestinal mucosal barrier and intestinal microflora[J]. Chin J Microecol, 2019,31(12):1465-1469.
|
15 |
张惠华,梁亚楠,张蕾. 短链脂肪酸的检测方法、生理作用及其与疾病的相关性研究[J]. 当代医药论丛,2019,17(15):97-99. doi:10.3969/j.issn.2095-7629.2019.15.067
doi: 10.3969/j.issn.2095-7629.2019.15.067
|
16 |
SCHROEDER B O, BIRCHENOUGH G, STAHLMAN M,et al. Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration[J]. Cell Host Microbe, 2018, 23(1):27-40. doi:10.1016/j.chom.2017.11.004
doi: 10.1016/j.chom.2017.11.004
|
17 |
MA S, YEOM J, LIM Y. Specific activation of hypoxia-inducible factor-2α by propionate metabolism via a β-oxidation-like pathway stimulates muc2 production in intestinal goblet cells[J].Biomed Pharmacother, 2022, 155:113672. doi:10.1016/j.biopha.2022.113672
doi: 10.1016/j.biopha.2022.113672
|
18 |
JUNG T, HAN K, PARK J, et al. Butyrate modulates mucin secretion and bacterial adherence in lovo cells via mapk signaling[J]. PLoS One, 2022, 17(7):e269872. doi:10.1371/journal.pone.0269872
doi: 10.1371/journal.pone.0269872
|
19 |
NYSTROM E E L, BIRCHENOUGH G M H, VAN DER POST S,et al. Calcium-activated Chloride Channel Regulator 1 (CLCA1) Controls Mucus Expansion in Colon by Proteolytic Activity[J]. EBioMedicine, 2018, 33:134-143. doi:10.1016/j.ebiom.2018.05.031
doi: 10.1016/j.ebiom.2018.05.031
|
20 |
SHAIDULLOV I F, SOROKINA D M, SITDIKOV F G, et al. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome[J]. BMC Gastroenterol, 2021, 21(1):37. doi:10.1186/s12876-021-01613-y
doi: 10.1186/s12876-021-01613-y
|
21 |
BEISNER J, FILIPE R L, KADEN-VOLYNETS V, et al. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induce-d Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides[J]. Front Immunol, 2021, 12:678360. doi:10.3389/fimmu.2021.678360
doi: 10.3389/fimmu.2021.678360
|
22 |
SALERI R, BORGHETTI P, RAVANETTI F, et al. Effects of different short-chain fatty acids (scfa) on gene expression of proteins involved in barrier function in ipec-j2[J]. Porcine Health Manag, 2022, 8(1):21. doi:10.1186/s40813-022-00264-z
doi: 10.1186/s40813-022-00264-z
|
23 |
BILOTTA A J, MA C, YANG W, et al. Propionate Enhances Cell Speed and Persistence to Promote Intestinal Epithelial Turnover and Repair[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(4):1023-1044. doi:10.1016/j.jcmgh.2020.11.011
doi: 10.1016/j.jcmgh.2020.11.011
|
24 |
WANG D, LIU C D, LI H F, et al. LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue[J]. Metabolism, 2020, 102:154011. doi:10.1016/j.metabol.2019.154011
doi: 10.1016/j.metabol.2019.154011
|
25 |
代仔怡,武卫东,梁继芳,等. 短链脂肪酸平衡在脓毒症治疗中的研究进展[J]. 实用医学杂志,2022,38(3):266-270. doi:10.3969/j.issn.1006-5725.2022.03.002
doi: 10.3969/j.issn.1006-5725.2022.03.002
|
26 |
WACLAWIKOVA B, CODUTTI A, ALIM K, et al. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies[J]. Gut Microbes, 2022, 14(1):1997296. doi:10.1080/19490976.2021.1997296
doi: 10.1080/19490976.2021.1997296
|
27 |
BOLTE L A, VICH V A, IMHANN F, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome[J]. Gut, 2021, 70(7):1287-1298. doi:10.1136/gutjnl-2020-322670
doi: 10.1136/gutjnl-2020-322670
|
28 |
BRUNKWALL L, ERICSON U, NILSSON P M, et al. Self-reported bowel symptoms are associated with differences in overall gut microbiota composition and enrichment of Blautia in a population-based cohort[J]. J Gastroenterol Hepatol, 2021, 36(1):174-180. doi:10.1111/jgh.15104
doi: 10.1111/jgh.15104
|
29 |
ZHEN Z, XIA L, YOU H, et al. An Integrated Gut Microbiota and Network Pharmacology Study on Fuzi-Lizhon-g Pill for Treating Diarrhea-Predominant Irritable Bowel Syndrome[J]. Front Pharmacol, 2021, 12:746923. doi:10.3389/fphar.2021.746923
doi: 10.3389/fphar.2021.746923
|
30 |
齐绍云,蔡洁毅,周龙艳,等. 防风对PI-IBS模型大鼠肠道菌群及丝氨酸蛋白酶信号的影响[J]. 中药新药与临床药理,2015,26(6):790-796.
|
31 |
刘雪松,魏鸿雁,石磊岭,等. 骆驼刺提取物对腹泻型肠易激综合征模型大鼠水液代谢和胃肠激素水平的影响[J]. 中国新药与临床杂志,2019,38(3):169-173.
|
32 |
GENG F, MAO Y, CONG S, et al. Protective effect of schisandrin A on intestinal mucosal barrier function in diarrhea-predominant irritable bowel syndrome rats[J]. Chin J Patho, 2022,38(7):1266-1273.
|
33 |
BAI X, FU R, DUAN Z, et al. Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice[J]. Food Res Int, 2021, 146:110465. doi:10.1016/j.foodres.2021.110465
doi: 10.1016/j.foodres.2021.110465
|
34 |
何晗,但林蔚,王巧珍,等. 基于16S rRNA高通量测序研究麸炒前后白术水煎液及多糖对脾虚泄泻型大鼠肠道菌群的影响[J]. 中药药理与临床,2022,38(2):136-141.
|
35 |
XIE Y, ZHAN X, TU J, et al. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regul-ating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J]. J Ethnopharmacol, 2021, 272:113925. doi:10.1016/j.jep.2021.113925
doi: 10.1016/j.jep.2021.113925
|
36 |
LI L, CUI H, LI T, et al. Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on Diarrhea-Predominant Irritable Bowel Syndrome In Vivo[J]. Front Pharmacol, 2020, 11:1210. doi:10.3389/fphar.2020.01210
doi: 10.3389/fphar.2020.01210
|
37 |
詹胜刚. 小檗碱对肠易激综合征大鼠肠道菌群及免疫的影响[D]. 广州:暨南大学,2017.
|
38 |
杨康,梅华迪,马现永,等. 厚朴酚对动物肠道黏膜屏障功能的影响及其调控机制[J]. 动物营养学报,2024,36(1):74-85. doi:10.12418/CJAN2024.008
doi: 10.12418/CJAN2024.008
|
39 |
张儒奇,方志安,韩文庆,等. 葛根芩连汤对腹泻型肠易激综合征大鼠肠道菌群的影响[J]. 中国中药杂志,2022,47(24):6709-6719.
|
40 |
ZHANG Y Z, LI Y C, YANG Y F, et al. The regulatory effect of Xiangsha Liujunzi Tang on gut microbiota and its metabolites SCFAs in IBS-D rats with spleen deficiency type[J]. Chin Trad Patent Med, 2024,46(1):272-277.
|
41 |
胡朋,符燕,王锋. 四神丸合附子理中汤加减治疗腹泻型肠易激综合征的疗效及对肠道菌群的影响[J]. 河北中医,2023,45(9):1472-1475. doi:10.3969/j.issn.1002-2619.2023.09.015
doi: 10.3969/j.issn.1002-2619.2023.09.015
|
42 |
尹德菲,魏秀楠,刘佳卉,等. 理肠饮治疗腹泻型肠易激综合征肝郁脾虚证的临床疗效及机制研究[J]. 南京中医药大学学报,2022,38(8):687-695.
|
43 |
丁晓洁,孙喜灵,于晓飞,等. 乌梅丸对腹泻型肠易激综合征模型大鼠肠道菌群和炎症因子的影响[J]. 辽宁中医杂志,2019,46(6):1296-1299+1345.
|
44 |
申中美. 参苓白术散对腹泻型肠易激综合征的临床疗效系统评价及作用机制研究[D]. 南京:南京中医药大学,2020.
|
45 |
谢慧. 肠康方联用结肠靶向益生菌对IBS-D大鼠的协同治疗作用研究[D]. 南京:南京中医药大学,2020.
|
46 |
胡蓉, 李瑞. 理中汤合小建中汤加减治疗肠易激综合征疗效及对肠屏障功能、血清炎性因子和肠道菌群的影响[J]. 四川中医, 2023, 41(10):120-123.
|
47 |
张声生, 王垂杰, 李玉锋, 等. 泄泻中医诊疗专家共识意见(2017)[J]. 中医杂志, 2017, 58(14):1256-1260.
|
48 |
QIU F, ZHENG C, ZHU J, et al. The Traditional Chinese Medicine Pathology and Physiology of Colorectal Cancer Based on the Theory of “Large intestine dominating fluid”[J]. Guiding J Tradit Chin Med Pharm,2018,24(1):68-70.
|
49 |
田琳,柯晓,吴松鹰,等. 从“大肠主津”理论探讨功能性便秘与肠道微生态的相关性[J]. 世界科学技术-中医药现代化,2022,24(4):1695-1700.
|