1 |
CESTA C E, ROTEM R, BATEMAN B T, et al. Safety of GLP-1 Receptor Agonists and Other Second-Line Antidiabetics in Early Pregnancy [J]. JAMA Intern Med, 2024, 184(2): 144-152. doi:10.1001/jamainternmed.2023.6663
doi: 10.1001/jamainternmed.2023.6663
|
2 |
NEUEN B L, HEERSPINK H J L, VART P, et al. Estimated Lifetime Cardiovascular, Kidney, and Mortality Benefits of Combination Treatment With SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Nonsteroidal MRA Compared With Conventional Care in Patients With Type 2 Diabetes and Albuminuria [J]. Circulation, 2024, 149(6): 450-462. doi:10.1161/circulationaha.123.067584
doi: 10.1161/circulationaha.123.067584
|
3 |
ZHU Y, XIA X, HE Q, et al. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications [J]. Front Endocrinol (Lausanne), 2023, 14: 1202463. doi:10.3389/fendo.2023.1202463
doi: 10.3389/fendo.2023.1202463
|
4 |
CYR A R, HUCKABY L V, SHIVA S S, et al. Nitric Oxide and Endothelial Dysfunction [J]. Crit Care Clin, 2020, 36(2): 307-321. doi:10.1016/j.ccc.2019.12.009
doi: 10.1016/j.ccc.2019.12.009
|
5 |
ALMUTAIRI M, BATRAN RUSSHER J R AL. Glucagon-like peptide-1 receptor action in the vasculature [J]. Peptides, 2019, 111: 26-32. doi:10.1016/j.peptides.2018.09.002
doi: 10.1016/j.peptides.2018.09.002
|
6 |
ANDRIKOU E, TSIOUFIS C, ANDRIKOU I, et al. GLP-1 receptor agonists and cardiovascular outcome trials: An update [J]. Hellenic J Cardiol, 2019, 60(6): 347-351. doi:10.1016/j.hjc.2018.11.008
doi: 10.1016/j.hjc.2018.11.008
|
7 |
LE Y, WEI R, YANG K, et al. Liraglutide ameliorates palmitate-induced oxidative injury in islet microvascular endothelial cells through GLP-1 receptor/PKA and GTPCH1/eNOS signaling pathways [J]. Peptides, 2020, 124: 170212. doi:10.1016/j.peptides.2019.170212
doi: 10.1016/j.peptides.2019.170212
|
8 |
LI J, ALBAJRAMI O, ZHUO M, et al. Decision Algorithm for Prescribing SGLT2 Inhibitors and GLP-1 Receptor Agonists for Diabetic Kidney Disease [J]. Clin J Am Soc Nephrol, 2020, 15(11): 1678-1688. doi:10.2215/cjn.02690320
doi: 10.2215/cjn.02690320
|
9 |
WITHAAR C, MEEMS L M G, MARKOUSIS-MAVROGENIS G, et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction [J]. Cardiovasc Res, 2021, 117(9): 2108-2124. doi:10.1093/cvr/cvaa256
doi: 10.1093/cvr/cvaa256
|
10 |
GROUP G S R, NATHAN D M, LACHIN J M, et al. Glycemia Reduction in Type 2 Diabetes-Microvascular and Cardiovascular Outcomes [J]. N Engl J Med, 2022, 387(12): 1075-1088. doi:10.1056/nejmoa2200436
doi: 10.1056/nejmoa2200436
|
11 |
TRANG N N, CHUNG C C, LEE T W, et al. Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats [J]. Int J Mol Sci, 2021, 22(3): 1177. doi:10.3390/ijms22031177
doi: 10.3390/ijms22031177
|
12 |
LI R, SHAN Y, GAO L, et al. The Glp-1 Analog Liraglutide Protects Against Angiotensin Ⅱ and Pressure Overload-Induced Cardiac Hypertrophy via PI3K/Akt1 and AMPKa Signaling [J]. Front Pharmacol, 2019, 10: 537. doi:10.3389/fphar.2019.00537
doi: 10.3389/fphar.2019.00537
|
13 |
WANG J, GUO R, MA X, et al. Liraglutide inhibits AngⅡ-induced cardiac fibroblast proliferation and ECM deposition through regulating miR-21/PTEN/PI3K pathway [J]. Cell Tissue Bank, 2023, 24(1): 125-137. doi:10.1007/s10561-022-10021-9
doi: 10.1007/s10561-022-10021-9
|
14 |
PRIMER K R, PSALTIS P J, TAN J T M, et al. The Role of High-Density Lipoproteins in Endothelial Cell Metabolism and Diabetes-Impaired Angiogenesis [J]. Int J Mol Sci, 2020, 21(10): 3633. doi:10.3390/ijms21103633
doi: 10.3390/ijms21103633
|
15 |
石建梅, 王茜茜, 韦晓洁. 铁蛋白自噬在糖尿病及其相关并发症发病机制中的研究进展 [J]. 实用医学杂志, 2024, 40(3): 417-422.
|
16 |
EL-ASHMAWY H M, SELIM F O, HOSNY T A M, et al. Association of low serum Meteorin like (Metrnl) concentrations with worsening of glucose tolerance, impaired endothelial function and atherosclerosis [J]. Diabetes Res Clin Pract, 2019, 150: 57-63. doi:10.1016/j.diabres.2019.02.026
doi: 10.1016/j.diabres.2019.02.026
|
17 |
PONT C, ASCASO F J, GRZYBOWSKI A, et al. Corneal endothelial cell density during diabetes mellitus and ocular diabetes complications treatment [J]. J Fr Ophtalmol, 2020, 43(8): 794-798. doi:10.1016/j.jfo.2019.12.003
doi: 10.1016/j.jfo.2019.12.003
|
18 |
林丹红,全会标,欧倩滢,等. 利拉鲁肽对超重或肥胖男性2型糖尿病患者睾酮及性功能的影响 [J]. 实用医学杂志, 2023, 39(7): 894-898.
|
19 |
任丽君,高红红,宋瑞捧. 胰高血糖素样肽1受体基因遗传变异对利拉鲁肽治疗2型糖尿病患者疗效的影响 [J]. 实用医学杂志, 2023, 39(2): 164-169. doi:10.3969/j.issn.1006-5725.2023.02.007
doi: 10.3969/j.issn.1006-5725.2023.02.007
|
20 |
YAO Y, SONG Q, HU C, et al. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes [J]. Cardiovasc Res, 2022, 118(1): 196-211. doi:10.1093/cvr/cvab013
doi: 10.1093/cvr/cvab013
|
21 |
BAHADORAN Z, MIRMIRAN P, GHASEMI A, et al. Type 2 Diabetes and Cancer: The Nitric Oxide Connection [J]. Crit Rev Oncog, 2019, 24(3): 235-242. doi:10.1615/critrevoncog.2019031256
doi: 10.1615/critrevoncog.2019031256
|
22 |
CHEN W H, CHEN C H, HSU M C, et al. Advances in the molecular mechanisms of statins in regulating endothelial nitric oxide bioavailability: Interlocking biology between eNOS activity and L-arginine metabolism [J]. Biomed Pharmacother, 2024, 171: 116192. doi:10.1016/j.biopha.2024.116192
doi: 10.1016/j.biopha.2024.116192
|
23 |
ALCAZAR-LEYVA S, ZAPATA E, BERNAL-ALCANTARA D, et al. Thiamine pyrophosphate diminishes nitric oxide synthesis in endothelial cells [J]. Int J Vitam Nutr Res, 2021, 91(5/6): 491-499. doi:10.1024/0300-9831/a000650
doi: 10.1024/0300-9831/a000650
|
24 |
BONDI C D, HARTMAN HLTAN R J. NRF2 in kidney physiology and disease [J]. Physiol Rep, 2024, 12(5): e15961. doi:10.14814/phy2.15961
doi: 10.14814/phy2.15961
|
25 |
ZHANG Q, LIU J, DUAN H, et al. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress [J]. J Adv Res, 2021, 34: 43-63. doi:10.1016/j.jare.2021.06.023
doi: 10.1016/j.jare.2021.06.023
|
26 |
YAN X, SU Y, FAN X, et al. Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism [J]. Cells, 2022, 11(23): 3821. doi:10.3390/cells11233821
doi: 10.3390/cells11233821
|