实用医学杂志 ›› 2024, Vol. 40 ›› Issue (12): 1749-1754.doi: 10.3969/j.issn.1006-5725.2024.12.023
收稿日期:
2023-11-11
出版日期:
2024-06-25
发布日期:
2024-06-14
通讯作者:
刘德伍
E-mail:ndyfy00706@ncu.edu.cn
基金资助:
Jingwen AN,Junyun FENG,Lei RAO,Dewu LIU()
Received:
2023-11-11
Online:
2024-06-25
Published:
2024-06-14
Contact:
Dewu LIU
E-mail:ndyfy00706@ncu.edu.cn
摘要:
细胞衰老和纤维化是两个与许多疾病发展密切相关的生物学过程。细胞衰老可通过端粒缩短、DNA损伤和氧化应激等机制发生,导致细胞功能退化和损伤修复能力下降。越来越多的研究表明,纤维化和细胞衰老的关系密不可分,细胞衰老已被证实参与瘢痕纤维化疾病的发生发展。深入理解细胞衰老与瘢痕纤维化的关系有助于寻找新的治疗策略和开发靶向性药物来减轻瘢痕纤维化进程。
中图分类号:
安靖雯,冯俊云,饶磊,刘德伍. 细胞衰老与瘢痕纤维化的关系研究进展[J]. 实用医学杂志, 2024, 40(12): 1749-1754.
Jingwen AN,Junyun FENG,Lei RAO,Dewu LIU. Research progress on relationship between cellular senescence and scar fibrosis[J]. The Journal of Practical Medicine, 2024, 40(12): 1749-1754.
1 |
MORETTI L, STALFORT J, BARKER T H, et al. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation [J]. J Biol Chem, 2022, 298(2): 101530. doi:10.1016/j.jbc.2021.101530
doi: 10.1016/j.jbc.2021.101530 |
2 |
DI MICCO R, KRIZHANOVSKY V, BAKER D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities [J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95. doi:10.1038/s41580-020-00314-w
doi: 10.1038/s41580-020-00314-w |
3 |
GIRE V, DULIC V. Senescence from G2 arrest, revisited [J]. Cell Cycle, 2015, 14(3): 297-304. doi:10.1080/15384101.2014.1000134
doi: 10.1080/15384101.2014.1000134 |
4 |
KUILMAN T, MICHALOGLOU C, MOOI W J, et al. The essence of senescence [J]. Genes Dev, 2010, 24(22): 2463-2479. doi:10.1101/gad.1971610
doi: 10.1101/gad.1971610 |
5 |
SCHUSTER R, YOUNESI F, EZZO M, et al. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair [J]. Cold Spring Harb Perspect Biol, 2023, 15(1): a041231. doi:10.1101/cshperspect.a041231
doi: 10.1101/cshperspect.a041231 |
6 |
ZHANG L, PITCHER L E, YOUSEFZADEH M J, et al. Cellular senescence: a key therapeutic target in aging and diseases [J]. J Clin Invest, 2022, 132(15): e158450. doi:10.1172/jci158450
doi: 10.1172/jci158450 |
7 |
BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues [J]. Genes Dev, 2020, 34(23-24): 1565-1576. doi:10.1101/gad.343129.120
doi: 10.1101/gad.343129.120 |
8 |
KUMARI R, JAT P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype [J]. Front Cell Dev Biol, 2021, 9:645593. doi:10.3389/fcell.2021.645593
doi: 10.3389/fcell.2021.645593 |
9 |
PETROVA N V, VELICHKO A K, RAZIN S V, et al. Small molecule compounds that induce cellular senescence [J]. Aging Cell, 2016, 15(6): 999-1017. doi:10.1111/acel.12518
doi: 10.1111/acel.12518 |
10 |
HUANG W, HICKSON L J, EIRIN A, et al. Cellular senescence: the good, the bad and the unknown [J]. Nat Rev Nephrol, 2022, 18(10): 611-627. doi:10.1038/s41581-022-00601-z
doi: 10.1038/s41581-022-00601-z |
11 |
BASISTY N, KALE A, JEON O H, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development [J]. PLoS Biol, 2020, 18(1): e3000599. doi:10.1371/journal.pbio.3000599
doi: 10.1371/journal.pbio.3000599 |
12 |
HENDERSON N C, RIEDER F, WYNN T A. Fibrosis: from mechanisms to medicines [J]. Nature, 2020, 587(7835): 555-566. doi:10.1038/s41586-020-2938-9
doi: 10.1038/s41586-020-2938-9 |
13 |
ZHOU D, BORSA M, SIMON A K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells [J]. Aging Cell, 2021, 20(2): e13316. doi:10.1111/acel.13316
doi: 10.1111/acel.13316 |
14 |
CUOLLO L, ANTONANGELI F, SANTONI A, et al. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases [J]. Biology (Basel), 2020, 9(12): 485. doi:10.3390/biology9120485
doi: 10.3390/biology9120485 |
15 |
YOUNIS L T, HASSAN M I ABU, TAIYEB ALI T B, et al. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing [J]. Asian J Pharm Sci, 2018, 13(4): 317-325. doi:10.1016/j.ajps.2017.12.003
doi: 10.1016/j.ajps.2017.12.003 |
16 |
BANG M, RYU O, KIM D G, et al. Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes [J]. Biomol Ther (Seoul), 2019, 27(3): 283-289. doi:10.4062/biomolther.2018.107
doi: 10.4062/biomolther.2018.107 |
17 |
BLOKLAND K E C, WATERS D W, SCHULIGA M, et al. Senescence of IPF Lung Fibroblasts Disrupt Alveolar Epithelial Cell Proliferation and Promote Migration in Wound Healing [J]. Pharmaceutics, 2020, 12(4): 389. doi:10.3390/pharmaceutics12040389
doi: 10.3390/pharmaceutics12040389 |
18 |
XU M, SU X, XIAO X, et al. Hydrogen Peroxide-Induced Senescence Reduces the Wound Healing-Promoting Effects of Mesenchymal Stem Cell-Derived Exosomes Partially via miR-146a [J]. Aging Dis, 2021, 12(1): 102-115. doi:10.14336/ad.2020.0624
doi: 10.14336/ad.2020.0624 |
19 |
WILKINSON H N, CLOWES C, BANYARD K L, et al. Elevated Local Senescence in Diabetic Wound Healing Is Linked to Pathological Repair via CXCR2 [J]. J Invest Dermatol, 2019, 139(5): 1171-1181.e6. doi:10.1016/j.jid.2019.01.005
doi: 10.1016/j.jid.2019.01.005 |
20 |
MOHAMAD KAMAL N S, SAFUAN S, SHAMSUDDIN S, et al. Aging of the cells: Insight into cellular senescence and detection Methods [J]. Eur J Cell Biol, 2020, 99(6): 151108. doi:10.1016/j.ejcb.2020.151108
doi: 10.1016/j.ejcb.2020.151108 |
21 |
JUN J I, LAU L F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing [J]. Nat Cell Biol, 2010, 12(7): 676-685. doi:10.1038/ncb2070
doi: 10.1038/ncb2070 |
22 |
冷敏, 彭颖, 林晓莹,等. 自噬在创面愈合中的作用研究进展 [J]. 实用医学杂志, 2020, 36(22): 3157-3160+3165. doi:10.3969/j.issn.1006-5725.2020.22.026
doi: 10.3969/j.issn.1006-5725.2020.22.026 |
23 | WILKINSON H N, HARDMAN M J. Cellular Senescence in Acute and Chronic Wound Repair [J]. Cold Spring Harb Perspect Biol, 2022, 14(11): a041221. |
24 |
SCHAFER M J, WHITE T A, IIJIMA K, et al. Cellular senescence mediates fibrotic pulmonary disease [J]. Nat Commun, 2017, 8:14532. doi:10.1093/geroni/igx004.547
doi: 10.1093/geroni/igx004.547 |
25 |
LIU R M, LIU G. Cell senescence and fibrotic lung diseases [J]. Exp Gerontol, 2020, 132:110836. doi:10.1016/j.exger.2020.110836
doi: 10.1016/j.exger.2020.110836 |
26 |
YAO C, GUAN X, CARRARO G, et al. Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis [J]. Am J Respir Crit Care Med, 2021, 203(6): 707-717. doi:10.1164/rccm.202004-1274oc
doi: 10.1164/rccm.202004-1274oc |
27 |
LUCAS J H, WANG Q, MUTHUMALAGE T, et al. Multi-Walled Carbon Nanotubes (MWCNTs) Cause Cellular Senescence in TGF-β Stimulated Lung Epithelial Cells [J]. Toxics, 2021, 9(6): 144. doi:10.3390/toxics9060144
doi: 10.3390/toxics9060144 |
28 |
RACKOW A R, NAGEL D J, MCCARTHY C, et al. The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops [J]. Eur Respir J, 2020, 56(5): 2000075. doi:10.1183/13993003.00075-2020
doi: 10.1183/13993003.00075-2020 |
29 |
HERNANDEZ-GONZALEZ F, FANER R, ROJAS M, et al. Cellular Senescence in Lung Fibrosis [J]. Int J Mol Sci, 2021, 22(13): 7012. doi:10.3390/ijms22137012
doi: 10.3390/ijms22137012 |
30 |
ÁLVAREZ D, CÁRDENES N, SELLARÉS J, et al. IPF lung fibroblasts have a senescent phenotype [J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(6): L1164-L1173. doi:10.1152/ajplung.00220.2017
doi: 10.1152/ajplung.00220.2017 |
31 |
PARIMON T, HOHMANN M S, YAO C. Cellular Senescence: Pathogenic Mechanisms in Lung Fibrosis [J]. Int J Mol Sci, 2021, 22(12): 6214. doi:10.3390/ijms22126214
doi: 10.3390/ijms22126214 |
32 |
XU J, ZHOU L, LIU Y. Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies [J]. Front Pharmacol, 2020, 11:601325. doi:10.3389/fphar.2020.601325
doi: 10.3389/fphar.2020.601325 |
33 |
ZHANG J Q, LI Y Y, ZHANG X Y, et al. Cellular senescence of renal tubular epithelial cells in renal fibrosis [J]. Front Endocrinol (Lausanne), 2023, 14:1085605. doi:10.3389/fendo.2023.1085605
doi: 10.3389/fendo.2023.1085605 |
34 |
LIN C H, CHEN J, ZHANG Z, et al. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney [J]. Kidney Int, 2016, 89(6): 1281-1292. doi:10.1016/j.kint.2016.01.030
doi: 10.1016/j.kint.2016.01.030 |
35 |
LUO C, ZHOU S, ZHOU Z, et al. Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells [J]. J Am Soc Nephrol, 2018, 29(4): 1238-1256. doi:10.1681/asn.2017050574
doi: 10.1681/asn.2017050574 |
36 |
ZHANG M, SERNA-SALAS S, DAMBA T, et al. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives [J]. Mech Ageing Dev, 2021, 199:111572. doi:10.1016/j.mad.2021.111572
doi: 10.1016/j.mad.2021.111572 |
37 |
SUGIHARA H, TERAMOTO N, YAMANOUCHI K, et al. Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion [J]. Aging (Albany NY), 2018, 10(4): 747-763. doi:10.18632/aging.101425
doi: 10.18632/aging.101425 |
38 |
KONG X, FENG D, WANG H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice [J]. Hepatology, 2012, 56(3): 1150-1159. doi:10.1002/hep.25744
doi: 10.1002/hep.25744 |
39 |
WAN Y, MENG F, WU N, et al. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells [J]. Hepatology, 2017, 66(2): 528-541. doi:10.1002/hep.29138
doi: 10.1002/hep.29138 |
40 |
BANALES J M, MARIN J J G, LAMARCA A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. doi:10.1038/s41575-020-0310-z
doi: 10.1038/s41575-020-0310-z |
41 |
LAGOUMTZI S M, CHONDROGIANNI N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases [J]. Free Radic Biol Med, 2021, 171:169-190. doi:10.1016/j.freeradbiomed.2021.05.003
doi: 10.1016/j.freeradbiomed.2021.05.003 |
42 |
JUSTICE J N, NAMBIAR A M, TCHKONIA T, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study [J]. E Bio Medicine, 2019, 40:554-563. doi:10.1016/j.ebiom.2018.12.052
doi: 10.1016/j.ebiom.2018.12.052 |
43 |
DONG D, CAI G Y, NING Y C, et al. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling [J]. Oncotarget, 2017, 8(10): 16109-16121. doi:10.18632/oncotarget.14884
doi: 10.18632/oncotarget.14884 |
44 |
SELVARANI R, MOHAMMED S, RICHARDSON A. Effect of rapamycin on aging and age-related diseases-past and future [J]. Geroscience, 2021, 43(3): 1135-1158. doi:10.1007/s11357-020-00274-1
doi: 10.1007/s11357-020-00274-1 |
45 |
YANG H, CHEN C, CHEN H, et al. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis [J]. Aging (Albany NY), 2020, 12(13): 12750-12770. doi:10.18632/aging.103177
doi: 10.18632/aging.103177 |
46 |
杨胜红, 欧应勇, 欧阳瑶. IL-17A及PI3K/Akt/mTOR信号通路在气道重塑中的研究进展 [J]. 实用医学杂志, 2022, 38(1): 116-119. doi:10.3969/j.issn.1006-5725.2022.01.022
doi: 10.3969/j.issn.1006-5725.2022.01.022 |
[1] | 方慧,袁怡婷,张永春,任山杉,陈露露,廖维,田艾. PU.1对牙龈卟啉单胞菌脂多糖刺激下衰老巨噬细胞产生凋亡抵抗的调控作用[J]. 实用医学杂志, 2025, 41(4): 471-477. |
[2] | 靳级,孙红,庄勇,宁旭,刘淼. 椎间盘退行性变的机制及治疗方案研究进展[J]. 实用医学杂志, 2024, 40(22): 3268-3274. |
[3] | 牛春燕,黄健康. 代谢性炎症新概念及其与非酒精性脂肪性肝病发病机制和治疗靶点的联系[J]. 实用医学杂志, 2024, 40(18): 2525-2529. |
[4] | 杨昆,王兰,赵志虎,张彦,余国营. 冠状病毒组装及释放机制的研究进展[J]. 实用医学杂志, 2024, 40(18): 2654-2659. |
[5] | 董佳艺 邵丽娟 郑柱 陈斯泽 . 嵌合抗原受体T细胞联合分子靶向药治疗实体瘤研究进展 [J]. 实用医学杂志, 2023, 39(7): 798-803. |
[6] | 钟培瑞, 何晓艳 廖瑛, 孙光华, 刘静, 周君, 李书枝, 刘媛, 屈萌艰, . P53/P21通路在电针抑制骨质疏松大鼠模型 成骨细胞衰老中的机制[J]. 实用医学杂志, 2023, 39(2): 192-197. |
[7] | 周玲梅, 许毓楷, 洪钿, 梁东坡, 谢育梅, 王树水, 张智伟, . 靶向药物对儿童先天性心脏病合并中重度肺动脉高压肺血管反应性的治疗效果 [J]. 实用医学杂志, 2022, 38(11): 1395-1399. |
[8] | 瞿霏霏, 钱晓涛, 洪波, 张华, 王明慧, 林琳. 厄洛替尼联合全脑局部推量放射治疗肺腺癌伴多发性脑转移患者的临床疗效观察[J]. 实用医学杂志, 2020, 36(20): 2820-2829. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||