1 |
LUDWIG S, ZARBOCK A. Coronaviruses and SARS-CoV-2: A brief overview[J]. Anesth Analg, 2020, 131(1): 93-96. doi:10.1213/ane.0000000000004845
doi: 10.1213/ane.0000000000004845
|
2 |
周恩豪,杨春. 新型冠状病毒肺炎的研究进展[J]. 实用医学杂志,2020,36(19):2609-2615.
|
3 |
栾涛,杨罡,王帅颖,等. “长新冠”综合征研究最新进展[J]. 实用医学杂志,2023,39(10):1195-1200.
|
4 |
ZHANG Y, HUANG Z, ZHU J, et al. An updated review of SARS-CoV-2 detection methods in the context of a novel coronavirus pandemic[J]. Bioeng Transl Med, 2022, 8(1): e10356. doi:10.1002/btm2.10356
doi: 10.1002/btm2.10356
|
5 |
江晶晶,冯富娟,高春,等. 新型冠状病毒肺炎的药物治疗研究进展[J]. 实用医学杂志,2022,38(7):786-790.
|
6 |
ARTIKA I M, DEWANTARI A K, WIYATNO A. Molecular biology of coronaviruses: current knowledge[J]. Heliyon, 2020, 6(8): e04743. doi:10.1016/j.heliyon.2020.e04743
doi: 10.1016/j.heliyon.2020.e04743
|
7 |
MASTERS P S. Coronavirus genomic RNA packaging[J]. Virology, 2019, 537: 198-207. doi:10.1016/j.virol.2019.08.031
doi: 10.1016/j.virol.2019.08.031
|
8 |
BAI Z, CAO Y, LIU W, et al. The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation [J]. Viruses, 2021, 13(6): 1115. doi:10.3390/v13061115
doi: 10.3390/v13061115
|
9 |
ADLY A N, BI M, CARLSON C R, et al. Assembly of SARS-CoV-2 ribonucleosomes by truncated N∗ variant of the nucleocapsid protein[J]. J Biol Chem, 2023, 299(12): 105362. doi:10.1016/j.jbc.2023.105362
doi: 10.1016/j.jbc.2023.105362
|
10 |
FUNG T S, LIU D X. Human coronavirus: host-pathogen interaction[J]. Annu Rev Microbiol, 2019, 73(1): 529-557. doi:10.1146/annurev-micro-020518-115759
doi: 10.1146/annurev-micro-020518-115759
|
11 |
MUKHERJEE S, BHATTACHARYYA D, BHUNIA A. Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain[J]. Biophys Chem, 2020, 266: 106452. doi:10.1016/j.bpc.2020.106452
doi: 10.1016/j.bpc.2020.106452
|
12 |
ZHANG Z, NOMURA N, MURAMOTO Y, et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly[J]. Nat Commun, 2022, 13(1): 4399. doi:10.1038/s41467-022-32019-3
doi: 10.1038/s41467-022-32019-3
|
13 |
CASTAÑO-RODRIGUEZ C, HONRUBIA JOSE M, GUTIÉRREZ-ÁLVAREZ J, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis[J]. mBio, 2018, 9(3): e02325-17. doi:10.1128/mbio.02325-17
doi: 10.1128/mbio.02325-17
|
14 |
KUZMIN A, OREKHOV P, ASTASHKIN R, et al. Structure and dynamics of the SARS-CoV-2 envelope protein monomer[J]. Proteins, 2022, 90(5): 1102-1114. doi:10.1002/prot.26317
doi: 10.1002/prot.26317
|
15 |
ALSAADI E A J, NEUMAN B W, JONES I M. Identification of a membrane binding peptide in the envelope protein of MHV coronavirus[J]. Viruses, 2020, 12(9): 1054. doi:10.3390/v12091054
doi: 10.3390/v12091054
|
16 |
ZHANG J, XIAO T, CAI Y, et al. Structure of SARS-CoV-2 spike protein[J]. Curr Opin Virol, 2021, 50: 173-182. doi:10.1016/j.coviro.2021.08.010
doi: 10.1016/j.coviro.2021.08.010
|
17 |
WRAPP D, WANG N, CORBETT K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483): 1260-1263. doi:10.1126/science.abb2507
doi: 10.1126/science.abb2507
|
18 |
KATHIRAVAN M K, RADHAKRISHNAN S, NAMASIVAYAM V, et al. An overview of spike surface glycoprotein in severe acute respiratory syndrome-coronavirus[J]. Front Mol Biosci, 2021, 8: 637550. doi:10.3389/fmolb.2021.637550
doi: 10.3389/fmolb.2021.637550
|
19 |
LI D, LIU Y, LU Y, et al. Palmitoylation of SARS-CoV-2 S protein is critical for S-mediated syncytia formation and virus entry Palmitoylation of SARS‐CoV‐2 S protein is critical for S‐mediated syncytia formation and virus entry[J]. J Med Virol, 2022, 94(1): 342-348. doi:10.1002/jmv.27339
doi: 10.1002/jmv.27339
|
20 |
PLESCIA C B, DAVID E A, PATRA D, et al. SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles[J]. J Biol Chem, 2021, 296: 100103. doi:10.1074/jbc.ra120.016148
doi: 10.1074/jbc.ra120.016148
|
21 |
SCHOEMAN D, FIELDING B C. Coronavirus envelope protein: current knowledge[J]. Virol J, 2019, 16(1): 69. doi:10.1186/s12985-019-1182-0
doi: 10.1186/s12985-019-1182-0
|
22 |
MAIN A, FULLER W. Protein S‐Palmitoylation: advances and challenges in studying a therapeutically important lipid modification[J]. FEBS J, 2021, 289(4): 861-882. doi:10.1111/febs.15781
doi: 10.1111/febs.15781
|
23 |
CADENA-LÓPEZ D, VILLALBA-NIETO M, CAMPOS-MELENDEZ F, et al. Assembly of Coronaviruses and CoV-Like-Particles[M] // COMAS-GARCIA M, ROSALES-MENDOZA S. Physical Virology. Cham: Springer, 2023: 141-160. doi:10.1007/978-3-031-36815-8_7
doi: 10.1007/978-3-031-36815-8_7
|
24 |
CUBUK J, ALSTON J J, INCICCO J J, et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA[J]. Nat Commun, 2021, 12(1): 1936. doi:10.1038/s41467-021-21953-3
doi: 10.1038/s41467-021-21953-3
|
25 |
LU S, YE Q, SINGH D, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein[J]. Nat Commun, 2021, 12(1): 502. doi:10.1038/s41467-020-20768-y
doi: 10.1038/s41467-020-20768-y
|
26 |
ETIBOR T A, YAMAUCHI Y, AMORIM M J. Liquid biomolecular condensates and viral lifecycles: Review and perspectives[J]. Viruses, 2021, 13(3): 366. doi:10.3390/v13030366
doi: 10.3390/v13030366
|
27 |
SARASTE J, PRYDZ K. Assembly and cellular exit of coronaviruses: hijacking an unconventional secretory pathway from the pre-Golgi intermediate compartment via the Golgi ribbon to the extracellular space[J]. Cells, 2021, 10(3): 503. doi:10.3390/cells10030503
doi: 10.3390/cells10030503
|
28 |
KUMAR B, HAWKINS G M, KICMAL T, et al. Assembly and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2): evaluation using virus-like particles[J]. Cells, 2021, 10(4): 853. doi:10.3390/cells10040853
doi: 10.3390/cells10040853
|
29 |
SCHERER K M, MASCHERONI L, CARNELL G W, et al. SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress[J]. Sci Adv, 2022, 8(1): eabl4895. doi:10.1126/sciadv.abl4895
doi: 10.1126/sciadv.abl4895
|
30 |
GHOSH S, DELLIBOVI-RAGHEB T A, KERVIEL A, et al. β- Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway [J]. Cell, 2020, 183(6): 1520-1535.e1514.
|
31 |
EYMIEUX S, UZBEKOV R, ROUILLÉ Y, et al. Secretory vesicles are the principal means of SARS-CoV-2 egress[J]. Cells, 2021, 10(8): 2047. doi:10.3390/cells10082047
doi: 10.3390/cells10082047
|
32 |
BAI Z, CAO Y, LIU W, et al. The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation[J]. Viruses, 2021, 13(6):1115. doi:10.3390/v13061115
doi: 10.3390/v13061115
|
33 |
DAWOOD A A, ALTOBJE M A. Inhibition of N-linked glycosylation by tunicamycin may contribute to the treatment of SARS-CoV-2[J]. Microb Pathog, 2020, 149: 104586. doi:10.1016/j.micpath.2020.104586
doi: 10.1016/j.micpath.2020.104586
|
34 |
COUR M, OVIZE M, ARGAUD L. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure?[J]. Crit Care, 2020, 24(1):276. doi:10.1186/s13054-020-03014-1
doi: 10.1186/s13054-020-03014-1
|
35 |
RAJ K, KAUR K, GUPTA G D, et al. Current understanding on molecular drug targets and emerging treatment strategy for novel coronavirus-19[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(7): 1383-1402. doi:10.1007/s00210-021-02091-5
doi: 10.1007/s00210-021-02091-5
|
36 |
D′ALESSANDRO S, SCACCABAROZZI D, SIGNORINI L, et al. The Use of Antimalarial Drugs against Viral Infection[J]. Microorganisms, 2020, 8(1):85.
|
37 |
RICHARDSON P, GRIFFIN I, TUCKER C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease[J]. Lancet, 2020, 395(10223): e30-e31. doi:10.1016/s0140-6736(20)30304-4
doi: 10.1016/s0140-6736(20)30304-4
|
38 |
WANG J, FANG S, XIAO H, et al. Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding[J]. PLoS One, 2009, 4(3): e4908. doi:10.1371/journal.pone.0004908
doi: 10.1371/journal.pone.0004908
|