| [1] |
赖静文, 赵雨川, 巫株华, 等. 结核细胞外囊泡生物标志物研究新进展与挑战[J]. 实用医学杂志, 2025, 41(14): 2278-2284.
|
| [2] |
ZHENG X, BAO Z, FORSMAN L D, et al. Drug Exposure and Minimum Inhibitory Concentration Predict Pulmonary Tuberculosis Treatment Response[J]. Clin Infect Dis,2021,73(9): e3520-e3528. doi:10.1093/cid/ciaa1569
doi: 10.1093/cid/ciaa1569
|
| [3] |
陆宇, 朱慧. 抗结核药治疗药物监测临床应用专家共识[J]. 中国防痨杂志, 2021, 43(9): 867-873.
|
| [4] |
World Health Organization.Global tuberculosis report 2020[R]. Geneva: World Health Organization, 2020.
|
| [5] |
WS 288—2017肺结核诊断[J]. 结核与肺部疾病杂志, 2024, 5(4): 376-378.
|
| [6] |
中国防痨协会学术工作委员会, 《中国防痨杂志》编辑委员会. 抗结核固定剂量复合制剂临床应用专家共识[J]. 中国防痨杂志, 2020, 42 (6): 561-568.
|
| [7] |
中国疾病预防控制中心结核病预防控制中心. 中国结核病防治工作技术指南[M]. 北京: 人民卫生出版社, 2021: 388.
|
| [8] |
王菲菲, 王鹏森, 范云帆, 等. 重庆市244例结核病患者一线抗结核药物血药浓度情况分析[J]. 中国防痨杂志, 2024, 46(S1): 29-32.
|
| [9] |
ZHAO G, CHEN M, SUN L, et al. Analysis of influencing factors on the plasma concentration of first-line anti-tuberculosis drugs-a single-center retrospective cohort study[J]. Ann Transl Med, 2022, 10(8): 461. doi:10.21037/atm-22-1341
doi: 10.21037/atm-22-1341
|
| [10] |
张冰, 西娜, 陈明, 等. 274例结核病患者抗结核药物血药浓度分析及其药物安全性探究[J]. 中国药物应用与监测, 2023, 20(2): 90-94.
|
| [11] |
史露露, 景辉, 梁敏, 等. 液相色谱串联质谱法检测抗结核药物血药浓度情况的临床分析[J]. 中国防痨杂志, 2024, 46(8): 886-891.
|
| [12] |
PERUMAL R, NAIDOO K, NAIDOO A, et al. Clinical impact of plasma concentrations of first-line antituberculosis drugs[J]. S Afr Med J,2023, 113(3): 148-153. doi:10.7196/samj.2023.v113i3.16761
doi: 10.7196/samj.2023.v113i3.16761
|
| [13] |
黄涛,陈晴,吴桂辉,等. 世界卫生组织2025年版《结核病整合指南模块4:治疗与关怀》解读[J]. 中华结核和呼吸杂志,2025,48(8): 708-718.
|
| [14] |
GOUTELLE S, BAHUAUD O, GENESTET C, et al. Exposure to Rifampicin and its Metabolite 25-Deacetyl rifampicin Rapidly Decreases During Tuberculosis Therapy[J]. Clin Pharmacokinet,2025, 64(3): 387-396. doi:10.1007/s40262-025-01479-3
doi: 10.1007/s40262-025-01479-3
|
| [15] |
AKKERMAN O W, DIJKWEL R D C, KERSTJENS H A M, et al. Isoniazid and rifampicin exposure during treatment in drug-susceptible TB[J]. Int J Tuberc Lung Dis, 2023, 27(10): 772-777. doi:10.5588/ijtld.22.0698
doi: 10.5588/ijtld.22.0698
|
| [16] |
GAO Y, DAVIES FORSMAN L, REN W, et al. Drug exposure of first-line anti-tuberculosis drugs in China: A prospective pharmacological cohort study[J]. Br J Clin Pharmacol, 2021, 87(3): 1347-1358. doi:10.1111/bcp.14522
doi: 10.1111/bcp.14522
|
| [17] |
IDRIS R, DAYANI A Z, GROH A M, et al. Sex-dependent variability of isoniazid and rifampicin serum levels in patients with tuberculosis[J]. Infection, 2025, 53(3): 1051-1060. doi:10.1007/s15010-024-02424-5
doi: 10.1007/s15010-024-02424-5
|
| [18] |
SILESHI T, MAKONNEN E, TELELE N F, et al. Variability in plasma rifampicin concentrations and role of SLCO1B1, ABCB1, AADAC2 and CES2 genotypes in Ethiopian patients with tuberculosis[J]. Infect Dis, 2024, 56(4): 308-319. doi:10.1080/23744235.2024.2309348
doi: 10.1080/23744235.2024.2309348
|
| [19] |
TRENTALANGE A, BORGOGNO E, MOTTA I, et al. Rifampicin and isoniazid maximal concentrations are below efficacy-associated thresholds in the majority of patients: Time to increase the doses?[J]. Int J Antimicrob Agents, 2021, 57(3): 106297. doi:10.1016/j.ijantimicag.2021.106297
doi: 10.1016/j.ijantimicag.2021.106297
|
| [20] |
MONDAL S, ROY V, MESHRAM G G, et al. Pharmacokinetics-pharmacodynamics of first-line antitubercular drugs: A comparative study in tuberculosis patients with and without concomitant diabetes mellitus[J]. Eur J Clin Pharmacol, 2024, 80(12): 1945-1958. doi:10.1007/s00228-024-03754-x
doi: 10.1007/s00228-024-03754-x
|
| [21] |
REBECCA YOWARAJ M, VILVAMANI S, BHARATHIRAJA T, et al. Pharmacokinetic drug-drug interaction between first-line anti-TB and anti-diabetic drugs in patients with tuberculosis and diabetes mellitus[J]. Indian J Tuberc, 2025, 72 : S43-S49. doi:10.1016/j.ijtb.2024.10.009
doi: 10.1016/j.ijtb.2024.10.009
|
| [22] |
CEVIK M, STURDY A, MARAOLO A E, et al. A systematic review on the effect of diabetes mellitus on the pharmacokinetics of TB drugs[J]. Int J Tuberc Lung Dis, 2024, 28(9): 454-460. doi:10.5588/ijtld.23.0507
doi: 10.5588/ijtld.23.0507
|
| [23] |
HU N, WANG H, QIAN Q, et al. P-glycoprotein associated with diabetes mellitus and survival of patients with pancreatic cancer: 8-year follow-up[J]. Braz J Med Biol Res, 2020, 53(11): e10068. doi:10.1590/1414-431x202010168
doi: 10.1590/1414-431x202010168
|
| [24] |
NEYSHABURINEZHAD N, SHIRZAD N, ROUINI M, NAMAZI S, et al. Evaluation of important human CYP450 isoforms and P-glycoprotein phenotype changes and genotype in type 2 diabetic patients, before and after intensifying treatment regimen using Geneva cocktail[J]. Basic Clin Pharmacol Toxicol, 2023, 132(6): 487-499. doi:10.1111/bcpt.13840
doi: 10.1111/bcpt.13840
|
| [25] |
PHAISAL W, ALBITAR O, CHARIYAVILASKUL P, et al. Genetic and clinical predictors of rifapentine and isoniazid pharmacokinetics in paediatrics with tuberculosis infection[J]. J Antimicrob Chemother, 2024, 79(6): 1270-1278. doi:10.1093/jac/dkae059
doi: 10.1093/jac/dkae059
|
| [26] |
PARIDA K K, LAHIRI M, GHOSH M, et al. P-glycoprotein inhibitors as an adjunct therapy for TB[J]. Drug Discov Today, 2024, 29(9): 104108. doi:10.1016/j.drudis.2024.104108
doi: 10.1016/j.drudis.2024.104108
|
| [27] |
ULANOVA V, KIVRANE A, VIKSNA A, et al. Effect of NAT2, GSTM1 and CYP2E1 genetic polymorphisms on plasma concentration of isoniazid and its metabolites in patients with tuberculosis, and the assessment of exposure-response relationships[J]. Front Pharmacol, 2024, 15: 1332752. doi:10.3389/fphar.2024.1332752
doi: 10.3389/fphar.2024.1332752
|