实用医学杂志 ›› 2025, Vol. 41 ›› Issue (16): 2597-2603.doi: 10.3969/j.issn.1006-5725.2025.16.023
收稿日期:
2025-02-27
出版日期:
2025-08-25
发布日期:
2025-08-28
通讯作者:
周思远
E-mail:zzsy6688@qq.com
基金资助:
Yue HE,Kexin CHENG,Yanqiu LI,Yujun HOU,Siyuan. ZHOU()
Received:
2025-02-27
Online:
2025-08-25
Published:
2025-08-28
Contact:
Siyuan. ZHOU
E-mail:zzsy6688@qq.com
摘要:
肠易激综合征(irritable bowel syndrome, IBS)是一种常见的功能性肠道疾病,其病因复杂,涉及多种因素的相互作用。近年来,越来越多的研究表明,肠道屏障功能障碍可能在IBS的发病机制中发挥重要作用。该文综述了肠道屏障受损对IBS的影响,探讨肠道机械屏障、免疫屏障、化学屏障、生物屏障与IBS的相关性以及临床治疗,并提出未来研究应关注肠道屏障修复靶向的机制研究,为IBS的发病机制及治疗提供了新的视角和方向。
中图分类号:
何悦,程珂新,李艳秋,侯雨君,周思远. 肠道屏障在肠易激综合征发病机制中的研究进展[J]. 实用医学杂志, 2025, 41(16): 2597-2603.
Yue HE,Kexin CHENG,Yanqiu LI,Yujun HOU,Siyuan. ZHOU. Research progress on intestinal barrier in irritable bowel syndrome pathogenesis[J]. The Journal of Practical Medicine, 2025, 41(16): 2597-2603.
[1] |
HUANG K Y, WANG F Y, LV M, et al. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment[J]. World J Gastroenterol, 2023, 29(26): 4120-4135. doi:10.3748/wjg.v29.i26.4120
doi: 10.3748/wjg.v29.i26.4120 |
[2] |
IONESCU V A, GHEORGHE G, GEORGESCU T F, et al. The latest data concerning the etiology and pathogenesis of irritable bowel syndrome[J]. J Clin Med, 2024, 13(17): 5124. doi:10.3390/jcm13175124
doi: 10.3390/jcm13175124 |
[3] |
CHEN Y, CUI W, LI X, et al. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease[J]. Front Immunol, 2021, 12: 761981. doi:10.3389/fimmu.2021.761981
doi: 10.3389/fimmu.2021.761981 |
[4] |
BARBARO M R, CREMON C, MARASCO G, et al. Molecular mechanisms underlying loss of vascular and epithelial integrity in irritable bowel syndrome[J]. Gastroenterology, 2024, 167(6): 1152-1166. doi:10.1053/j.gastro.2024.07.004
doi: 10.1053/j.gastro.2024.07.004 |
[5] |
UNTERSMAYR E, BRANDT A, KOIDL L, et al. The intestinal barrier dysfunction as driving factor of inflammaging[J]. Nutrients, 2022, 14(5): 949. doi:10.3390/nu14050949
doi: 10.3390/nu14050949 |
[6] |
HANNING N, EDWINSON AL, CEULEERS H, et al. Intestinal barrier dysfunction in irritable bowel syndrome: A systematic review[J]. Therap Adv Gastroenterol, 2021, 14: 1756284821993586. doi:10.1177/1756284821993586
doi: 10.1177/1756284821993586 |
[7] |
SCHOULTZ I, KEITA Å V. The intestinal barrier and current techniques for the assessment of gut permeability[J]. Cells, 2020, 9(8): 1909. doi:10.3390/cells9081909
doi: 10.3390/cells9081909 |
[8] |
ZHAO D Y, QI Q Q, LONG X, et al. Ultrastructure of intestinal mucosa in diarrhea-predominant irritable bowel syndrome[J]. Physiol Int, 2019, 106(3): 225-235. doi:10.1556/2060.106.2019.20
doi: 10.1556/2060.106.2019.20 |
[9] |
ZHAO J, DAI Y, TIAN J, et al. Impact of mechanical barrier damage and interleukin-17 on symptoms in patients with post-infectious irritable bowel syndrome[J]. Br J Hosp Med(Lond), 2024, 85(7): 1-13. doi:10.12968/hmed.2024.0114
doi: 10.12968/hmed.2024.0114 |
[10] |
VENGE P, TEJERA V C, PETERSSON C, et al. Elevated fecal biomarkers of colo‐rectal epithelial cell activity in irritable bowel syndrome[J].Neurogastroenterol Motil, 2025,37(4):e14984. doi:10.1111/nmo.14984
doi: 10.1111/nmo.14984 |
[11] |
WANG J, ZHAO D, LEI Z, et al. TRIM27 maintains gut homeostasis by promoting intestinal stem cell self-renewal[J]. Cell Mol Immunol, 2023, 20(2): 158-174. doi:10.1038/s41423-022-00963-1
doi: 10.1038/s41423-022-00963-1 |
[12] | 许帮荣, 蒋正华, 陈鑫, 等. miRNA在肠黏膜屏障功能中的作用研究进展[J]. 实用医学杂志, 2025, 41(7): 1079-1083. |
[13] |
XI M, ZHAO P, LI F, et al. MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea[J].J Biol Chem, 2022, 298(11): 102461. doi:10.1016/j.jbc.2022.102461
doi: 10.1016/j.jbc.2022.102461 |
[14] |
XU R, LIU X, TIAN M, et al. Atractylodes-I overcomes the oxidative stress-induced colonic mucosal epithelial cells dysfunction to prevent irritable bowel syndrome via modulating the miR-34a-5p-LDHA signaling pathway[J]. Curr Mol Med, 2023, 23(8): 825-833. doi:10.2174/1566524022666220811161111
doi: 10.2174/1566524022666220811161111 |
[15] |
BALDA M S, MATTER K. Tight junctions[J]. Curr Biol, 2023, 33(21): R1135-R1140. doi:10.1016/j.cub.2023.09.027
doi: 10.1016/j.cub.2023.09.027 |
[16] |
MEOLI L, GÜNZEL D. Channel functions of claudins in the organization of biological systemsclaudins[J]. Biochim Biophys Acta Biomembr, 2020, 1862(9): 183344. doi:10.1016/j.bbamem.2020.183344
doi: 10.1016/j.bbamem.2020.183344 |
[17] |
AWAD K, BARMEYER C, BOJARSKI C, et al. Epithelial barrier dysfunction in diarrhea-predominant irritable bowel syndrome (IBS-D) via downregulation of claudin-1[J]. Cells, 2023, 12(24): 2846. doi:10.3390/cells12242846
doi: 10.3390/cells12242846 |
[18] | 王玲玲, 柏茂树, 吴至久. 基于AQP3/claudin-1研究痛泻要方治疗腹泻型肠易激综合征模型大鼠的机制[J]. 辽宁中医杂志, 2024, 51(3): 200-204, 229. |
[19] |
HORIE H, HANDA O, NAITO Y, et al. Subepithelial serotonin reduces small intestinal epithelial cell tightness via reduction of occluding expression[J]. Turk J Gastroenterol, 2022, 33(1): 74-79. doi:10.5152/tjg.2022.20691
doi: 10.5152/tjg.2022.20691 |
[20] |
YU S, HE J, XIE K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis[J]. Int J Biol Sci, 2023, 19(12): 3804-3815. doi:10.7150/ijbs.85765
doi: 10.7150/ijbs.85765 |
[21] |
HE Y Q, ZHU J R, SUN W J, et al. ZO-1 and IL-1RAP phosphorylation: Potential role in mediated brain-gut axis dysregulation in irritable bowel syndrome-like stressed mice[J]. Int J Med Sci, 2024, 21(9): 1738-1755. doi:10.7150/ijms.95848
doi: 10.7150/ijms.95848 |
[22] |
LEE J Y, KIM N, PARK J H, et al. Expression of neurotrophic factors, tight junction proteins, and cytokines according to the irritable bowel syndrome subtype and sex[J]. J Neurogastroenterol Motil, 2020, 26(1): 106-116. doi:10.5056/jnm19099
doi: 10.5056/jnm19099 |
[23] |
KIM S U, CHOI J A, HAN M H, et al. Tight junction protein changes in irritable bowel syndrome: The relation of age and disease severity[J]. Korean J Int Med, 2024, 39(6): 906-916. doi:10.3904/kjim.2024.097
doi: 10.3904/kjim.2024.097 |
[24] |
CHAI W H, MA Y, LI J J, et al. Immune cell signatures and causal association with irritable bowel syndrome: A mendelian randomization study[J]. World J Clinical Cases, 2024, 12(17):3094-3104. doi:10.12998/wjcc.v12.i17.3094
doi: 10.12998/wjcc.v12.i17.3094 |
[25] |
VAN REMOORTEL S, HUSSEIN H, BOECKXSTAENS G. Mast cell modulation: A novel therapeutic strategy for abdominal pain in irritable bowel syndrome[J]. Cell Rep Med, 2024, 5(10): 101780. doi:10.1016/j.xcrm.2024.101780
doi: 10.1016/j.xcrm.2024.101780 |
[26] |
HASLER W L, GRABAUSKAS G, SINGH P, et al. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome[J]. Neurogastroenterol Motil, 2022, 34(7): e14339. doi:10.1111/nmo.14339
doi: 10.1111/nmo.14339 |
[27] |
MEIRA DE-FARIA F, CASADO-BEDMAR M, MÅRTEN LINDQVIST C, et al. Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome[J]. Neurogastroenterol Motil, 2021, 33(11): e14130. doi:10.1111/nmo.14130
doi: 10.1111/nmo.14130 |
[28] |
DECRAECKER L, ESTÉVEZ M C, REMOORTEL S V, et al. Characterisation of MRGPRX2+ mast cells in irritable bowel syndrome[J]. Gut, 2025,74(7):1068-1077. doi:10.1136/gutjnl-2024-334037
doi: 10.1136/gutjnl-2024-334037 |
[29] |
KIM H J, KIM H, LEE J H, et al. Toll-like receptor 4 (TLR4): New insight immune and aging[J]. Immun Ageing, 2023, 20(1): 67. doi:10.1186/s12979-023-00383-3
doi: 10.1186/s12979-023-00383-3 |
[30] |
ZHOU G Q, HUANG M J, YU X, et al. Early life adverse exposures in irritable bowel syndrome: New insights and opportunities[J]. Front Pediatr, 2023, 11:124801. doi:10.3389/fped.2023.1241801
doi: 10.3389/fped.2023.1241801 |
[31] |
WAN X, WANG L, WANG Z, et al. Toll-like receptor 4 plays a vital role in irritable bowel syndrome: A scoping review[J]. Front Immunol, 2024, 15: 1490653. doi:10.3389/fimmu.2024.1490653
doi: 10.3389/fimmu.2024.1490653 |
[32] |
BELMONTE L, YOUMBA S B, BERTIAUX-VANDAËLE N, et al. Role of toll like receptors in irritable bowel syndrome: Differential mucosal immune activation according to the disease subtype[J]. PLoS One, 2012, 7(8): e42777. doi:10.1371/journal.pone.0042777
doi: 10.1371/journal.pone.0042777 |
[33] |
SHUKLA R, GHOSHAL U, RANJAN P, et al. Expression of toll-like receptors, pro-, and anti-inflammatory cytokines in relation to gut microbiota in irritable bowel syndrome: The evidence for its micro-organic basis[J]. J Neurogastroenterol Motil, 2018, 24(4): 628-642. doi:10.5056/jnm18130
doi: 10.5056/jnm18130 |
[34] |
SHIMBORI C, DE PALMA G, BAERG L, et al. Gut bacteria interact directly with colonic mast cells in a humanized mouse model of IBS[J]. Gut Microbes, 2022, 14(1):2105095. doi:10.1080/19490976.2022.2105095
doi: 10.1080/19490976.2022.2105095 |
[35] |
ZHOU H H, ZHANG Y M, ZHANG S P, et al. Suppression of PTRF alleviates post-infectious irritable bowel syndrome via downregulation of the TLR4 pathway in rats[J]. Front Pharmacol, 2021, 12:724410. doi:10.3389/fphar.2021.724410
doi: 10.3389/fphar.2021.724410 |
[36] |
MEYER F, WENDLING D, DEMOUGEOT C, et al. Cytokines and intestinal epithelial permeability: A systematic review[J]. Autoimmun Rev, 2023, 22(6): 103331. doi:10.1016/j.autrev.2023.103331
doi: 10.1016/j.autrev.2023.103331 |
[37] |
CRAWFORD C K, LOPEZ CERVANTES V, QUILICI M L, et al. Inflammatory cytokines directly disrupt the bovine intestinal epithelial barrier[J]. Sci Rep, 2022, 12(1): 14578. doi:10.1038/s41598-022-18771-y
doi: 10.1038/s41598-022-18771-y |
[38] |
NORLIN A K, WALTER S, ICENHOUR A, et al. Fatigue in irritable bowel syndrome is associated with plasma levels of TNF-α and mesocorticolimbic connectivity[J]. Brain Behav Immun, 2021, 92: 211-222. doi:10.1016/j.bbi.2020.11.035
doi: 10.1016/j.bbi.2020.11.035 |
[39] |
CHEN L J, PLANTINGA A M, BURR R, et al. Exploration of cytokines and microbiome among males and females with diarrhea-predominant irritable bowel syndrome[J]. Dig Dis Sci, 2025, 70(3): 1043-1051. doi:10.1007/s10620-024-08836-5
doi: 10.1007/s10620-024-08836-5 |
[40] |
SANG X, WANG Q, NING Y, et al. Age-related mucus barrier dysfunction in mice is related to the changes in Muc2 mucin in the colon[J]. Nutrients, 2023, 15(8): 1830. doi:10.3390/nu15081830
doi: 10.3390/nu15081830 |
[41] |
XU Y, XIONG Y, LIU Y, et al. Activation of goblet cell Piezo1 alleviates mucus barrier damage in mice exposed to WAS by inhibiting H3K9me3 modification[J]. Cell Biosci, 2023, 13(1): 7. doi:10.1186/s13578-023-00952-5
doi: 10.1186/s13578-023-00952-5 |
[42] |
ALONSO-COTONER C, ABRIL-GIL M, ALBERT-BAYO M, et al. The role of purported mucoprotectants in dealing with irritable bowel syndrome, functional diarrhea, and other chronic diarrheal disorders in adults[J]. Adv Ther, 2021, 38(5): 2054-2076. doi:10.1007/s12325-021-01676-z
doi: 10.1007/s12325-021-01676-z |
[43] |
OKUMURA R, TAKEDA K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation[J]. Semin Immunopathol, 2024, 47(1): 2. doi:10.1007/s00281-024-01026-5
doi: 10.1007/s00281-024-01026-5 |
[44] |
FUSCO A, SAVIO V, DONNIACUO M, et al. Antimicrobial peptides human beta-defensin-2 and -3 protect the gut during candida albicans infections enhancing the intestinal barrier integrity: In vitro study[J]. Front Cell Infect Microbiol, 2021, 11:666900. doi:10.3389/fcimb.2021.666900
doi: 10.3389/fcimb.2021.666900 |
[45] |
SHULMAN R J, DEVARAJ S, HEITKEMPER M. Activation of the innate immune system in children with irritable bowel syndrome evidenced by increased fecal human β-defensin-2[J]. Clin Gastroenterol Hepatol, 2021, 19(10): 2121-2127. doi:10.1016/j.cgh.2020.09.034
doi: 10.1016/j.cgh.2020.09.034 |
[46] |
SAPIB Z, DE PALMA G, LU J, et al. Alterations in fecal β-defensin-3 secretion as a marker of instability of the gut microbiota[J]. Gut Microbes, 2023, 15(1): 2233679. doi:10.1080/19490976.2023.2233679
doi: 10.1080/19490976.2023.2233679 |
[47] |
CHOPYK D M, GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863. doi:10.1053/j.gastro.2020.04.077
doi: 10.1053/j.gastro.2020.04.077 |
[48] |
PARDO-CAMACHO C, GANDA MALL J P, MARTÍNEZ C, et al. Mucosal plasma cell activation and proximity to nerve fibres are associated with glycocalyx reduction in diarrhoea-predominant irritable bowel syndrome: Jejunal barrier alterations underlying clinical manifestations[J]. Cells, 2022, 11(13): 2046. doi:10.3390/cells11132046
doi: 10.3390/cells11132046 |
[49] |
HOU J J, WANG X, LI Y, et al. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome[J]. Microb Pathog, 2021, 157: 104995. doi:10.1016/j.micpath.2021.104995
doi: 10.1016/j.micpath.2021.104995 |
[50] |
SU Q, TUN H M, LIU Q, et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome[J]. Gut Microbes, 15(1): 2157697. doi:10.1080/19490976.2022.2157697
doi: 10.1080/19490976.2022.2157697 |
[51] | 窦鑫, 贺昌辉, 梅笑, 等. 基于“短链脂肪酸-肠屏障”途径探讨中药在腹泻型肠易激综合征中的干预研究进展[J]. 实用医学杂志, 2024, 40(15): 2177-2182. |
[52] |
EL-SALHY M, VALEUR J, HAUSKEN T, et al. Changes in fecal short-chain fatty acids following fecal microbiota transplantation in patients with irritable bowel syndrome[J]. Neurogastroenterol Motil, 2021, 33(2): e13983. doi:10.1111/nmo.13983
doi: 10.1111/nmo.13983 |
[53] |
TEIGE E S, HILLESTAD E M R, STEINSVIK E K, et al. Fecal bacteria and short-chain fatty acids in irritable bowel syndrome: Relations to subtype[J]. Neurogastroenterol Motil, 2024, 36(9): e14854. doi:10.1111/nmo.14854
doi: 10.1111/nmo.14854 |
[54] |
WU B Y, XU P, CHENG L, et al. The alteration of mucosal bile acid profile is associated with nerve growth factor expression in mast cells and bowel symptoms in diarrhea-predominant irritable bowel syndrome[J]. Clin Exp Immunol, 2024, 216(2): 200-210. doi:10.1093/cei/uxae006
doi: 10.1093/cei/uxae006 |
[55] |
YU L M, MAO L Q, WU C Y, et al. Chlorogenic acid improves intestinal barrier function by downregulating CD14 to inhibit the NF-κB signaling pathway[J]. J Funct Foods, 2021, 85: 104640. doi:10.1016/j.jff.2021.104640
doi: 10.1016/j.jff.2021.104640 |
[56] |
LINSALATA M, RIEZZO G, ORLANDO A, et al. The role of intestinal barrier function in overweight patients with IBS with diarrhea undergoing a long-term low fermentable oligo-, di-, and monosaccharide and polyol diet[J]. Nutrients, 2023, 15(21): 4683. doi:10.3390/nu15214683
doi: 10.3390/nu15214683 |
[57] |
NEE J, LEMBO A. Review article: Current and future treatment approaches for IBS with diarrhoea (IBS‐D) and IBS mixed pattern (IBS‐M)[J].Aliment Pharmacol Ther, 2021,54():S63-S74. doi:10.1111/apt.16625
doi: 10.1111/apt.16625 |
[58] |
ZHEN Z, XIA L, YOU H, et al. An integrated gut microbiota and network pharmacology study on fuzi-lizhong pill for treating diarrhea-predominant irritable bowel syndrome[J]. Front Pharmacol, 2021, 12:746923. doi:10.3389/fphar.2021.746923
doi: 10.3389/fphar.2021.746923 |
[59] |
MA X, HUANG J, WU H, et al. Uncovering the multitarget therapeutic mechanism of tong‐xie‐yao‐fang on irritable bowel syndrome[J].J Food Qual,2024,2024(1):8195739. doi:10.1155/2024/8195739
doi: 10.1155/2024/8195739 |
[60] |
HOU Y, CHANG X, LIU N, et al. Different acupuncture and moxibustion therapies in the treatment of IBS-D with anxiety and depression: A network meta-analysis[J]. Medicine(Baltimore), 2024, 103(17): e37982. doi:10.1097/md.0000000000037982
doi: 10.1097/md.0000000000037982 |
[61] |
FU Y, DING X, ZHANG M, et al. Intestinal mucosal barrier repair and immune regulation with an AI-developed gut-restricted PHD inhibitor[J]. Nat Biotechnol, 2024. doi: 10.1038/s41587-024-02503-w . Epub ahead of print.
doi: 10.1038/s41587-024-02503-w |
[1] | 马源鑫,梅笑,王云峥,王伟. TRPV1介导腹泻型肠易激综合征内脏高敏感的机制及针刺干预研究进展[J]. 实用医学杂志, 2025, 41(7): 1084-1090. |
[2] | 王伟,路士华,张宏昊,邓华亮. 丹皮酚治疗肠道疾病作用机制研究进展[J]. 实用医学杂志, 2025, 41(10): 1597-1602. |
[3] | 何榕茂,方泽扬,张芸芸,吴友谅,梁世秀,王斯琪. 碱性神经酰胺酶1在硫酸钠葡聚糖诱导小鼠溃疡性结肠炎中的保护作用[J]. 实用医学杂志, 2025, 41(1): 7-14. |
[4] | 高山,季坤,赵丽,邢妤佳,谢燕东,蔡习强. 食管鳞状上皮内瘤变的研究进展[J]. 实用医学杂志, 2024, 40(3): 432-438. |
[5] | 刘路,祝筱姬,钟玉绪. 慢性咳嗽:现状与展望[J]. 实用医学杂志, 2024, 40(21): 3107-3112. |
[6] | 凌鑫,钱佳萍,史冬涛,杨军,费培利. 西甲硅油治疗肠易激综合征患者对胃肠激素、肠道菌群及NLRP3炎性小体介导的炎性过程的影响[J]. 实用医学杂志, 2024, 40(2): 237-241. |
[7] | 卢刚刚,李生龙,赵永强,贾云鹏,梁永林,赵渊博. 氧化应激与铁死亡在糖尿病型阳痿中的相关性研究进展[J]. 实用医学杂志, 2024, 40(16): 2229-2235. |
[8] | 窦鑫,贺昌辉,梅笑,潘海迪,马源鑫,王伟. 基于“短链脂肪酸-肠屏障”途径探讨中药在腹泻型肠易激综合征中的干预研究进展[J]. 实用医学杂志, 2024, 40(15): 2177-2182. |
[9] | 黄山高,吴月玲,张颖. 瞄准未来:卵巢癌靶向治疗的新进展[J]. 实用医学杂志, 2024, 40(14): 1901-1907. |
[10] | 袁海霞,韩新民,陈天翼,宋宇尘. 注意缺陷多动障碍患儿大脑皮质结构异常研究进展[J]. 实用医学杂志, 2024, 40(10): 1455-1459. |
[11] | 杨园园 史明霞 . 继发性心脏淋巴瘤诊治研究进展[J]. 实用医学杂志, 2023, 39(9): 1067-1071. |
[12] | 车雅丹,李丽霞. 小分子抗血管生成药物在晚期乳腺癌中的研究进展[J]. 实用医学杂志, 2023, 39(22): 2866-2871. |
[13] | 张笑丹 梁平 梁倞 王洪博 苏江卫 . 枯草杆菌二联活菌肠溶胶囊对肝脏储备功能不同的肝硬化患者的肠道屏障功能与Th9细胞表达的影响 [J]. 实用医学杂志, 2023, 39(14): 1820-1824. |
[14] | 刘慧 何彩娴 彭继勇 钟熹 廖恺 袁亚维 郑荣辉 . 鼻咽癌放射治疗致放射性颈动脉损伤的研究进展 [J]. 实用医学杂志, 2023, 39(10): 1201-1205. |
[15] | 李艳伟 王彬 苗雨露 李小锦 张亚东 韩娟 庄朋伟 张艳军. 肠屏障功能障碍在脓毒症中的研究进展 [J]. 实用医学杂志, 2022, 38(7): 799-803. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||