实用医学杂志 ›› 2025, Vol. 41 ›› Issue (15): 2412-2417.doi: 10.3969/j.issn.1006-5725.2025.15.018

• 医学检查与临床诊断 • 上一篇    

CT引导下经皮肺穿刺活检术后气胸风险的预测模型

韩蕃颉,王海滨,李淋淋,郭冉,刘长江()   

  1. 济南市人民医院呼吸与危重症医学科 (山东 济南 271100 )
  • 收稿日期:2025-04-02 出版日期:2025-08-10 发布日期:2025-08-11
  • 通讯作者: 刘长江 E-mail:13054826488@163.com

Construction and validation of a risk prediction model for pneumothorax after CT⁃guided percutaneous lung puncture biopsy based on nomograms

Fanjie HAN,Haibin WANG,Linlin LI,Ran GUO,Changjiang LIU()   

  1. Department of Respiratory and Critical Care Medicine,Jinan People's Hospital,Jinan 271100,Shandong,China
  • Received:2025-04-02 Online:2025-08-10 Published:2025-08-11
  • Contact: Changjiang LIU E-mail:13054826488@163.com

摘要:

目的 构建并验证CT引导下经皮肺穿刺活检术(CT-PCNB)后气胸发生风险列线图模型的预测效能。 方法 选取2020年10月至2023年10月于医院接受CT-PCNB检查的246例患者,按照随机抽样分为训练集(n = 144)、验证集(n = 102)。在训练集中对CT-PCNB术后气胸发生的危险因素进行单因素、多因素logistic回归分析,筛选出影响CT-PCNB术后发生气胸的危险因素后构建列线图模型,验证集验证列线图模型的准确性。 结果 多因素logistic回归分析结果显示,年龄≥ 60岁、伴肺基础疾病、病灶直径< 2 cm、病灶至胸膜距离≥ 10 mm、穿刺过叶间胸膜、穿刺胸膜次数≥ 2次是训练集中CT-PCNB术后发生气胸的危险因素(P < 0.05)。基于训练集中6项影响CT-PCNB术后发生气胸的因素构建列线图模型,训练集ROC曲线结果显示AUC、敏感度、特异度分别为0.852、84.50%、67.50%。采用验证集患者数据对训练集中CT-PCNB术后气胸发生列线图模型进行验证,ROC曲线结果显示AUC、敏感度、特异度分别为0.845、83.00%、69.50%,且训练集、验证集列线图模型预测值与实际值差异无统计学意义(χ2 = 1.803、1.225,P > 0.05),具有临床有效性。 结论 基于CT-PCNB术后发生气胸的影响因素构建的列线图模型预测CT-PCNB术后发生气胸的效能较高,具有实际临床意义。

关键词: 肺穿刺活检, 体层摄影术, 术后气胸, 风险预测, 列线图模型

Abstract:

Objective To construct and validate the efficacy of a risk prediction model for pneumothorax after CT-guided percutaneous pulmonary puncture biopsy (CT-PCNB) based on nomograms. Methods A total of 246 patients who underwent CT-PCNB examination in the hospital from October 2020 to October 2023 were selected and divided into training set (n = 144) and validation set (n = 102) using a random sampling method. In the training set, univariate and multivariate logistic regression analyses were performed to identify risk factors for pneumothorax after CT-PCNB. A nomogram model was constructed based on the identified risk factors, and its accuracy was validated using the validation set. Results Multifactorial logistic regression analysis showed that age ≥ 60 years, concomitant underlying lung disease, lesion diameter < 2 cm, distance from lesion to pleura ≥ 10 mm, puncture through interlobular pleura, and ≥ 2 pleural punctures were the risk factors for pneumothorax after CT-PCNB in the training set (P < 0.05). A nomogram model was constructed based on these six factors. The ROC curve results for the training set showed an AUC of 0.852, sensitivity of 84.50%, and specificity of 67.50%. The nomogram model was validated using the validation set, with ROC curve results showing an AUC of 0.845, sensitivity of 83.00%, and specificity of 69.50%. There was no statistically significant difference between the predicted and actual values in both the training and validation sets (χ2 = 1.803, 1.225; P > 0.05), indicating clinical validity. Conclusion The nomogram model constructed based on the risk factors for pneumothorax after CT-PCNB has high predictive efficacy and is clinically meaningful.

Key words: lung puncture biopsy, tomography, postoperative pneumothorax, risk prediction, columnar graphic modeling

中图分类号: