1 |
DE WITT-FOY M E, NICKEL J C, SHOSKES D A. Management of chronic prostatitis/chronic pelvic pain syndrome[J]. Eur Urol Focus,2019,5(1):2-4. doi:10.1016/j.euf.2018.08.027
doi: 10.1016/j.euf.2018.08.027
|
2 |
中华医学会男科学分会. 慢性前列腺炎/慢性盆腔疼痛综合征诊疗指南[J]. 中华男科学杂志,2022,28(6):544-559.
|
3 |
FRANCO J V A, TURK T, JUNG J H, et al. Pharmacological interventions for treating chronic prostatitis/chronic pelvic pain syndrome: A Cochrane systematic review[J]. BJU Int,2020,125(4):490-496. doi:10.1111/bju.14988
doi: 10.1111/bju.14988
|
4 |
LIU S J, GAO Q H, DENG Y J, et al. Knowledge domain and emerging trends in chronic prostatitis/chronic pelvic pain syndrome from 1970 to 2020: A scientometric analysis based on VOS viewer and Cite Space[J]. Ann Palliat Med, 2022,11(5):1714-1724. doi:10.21037/apm-21-3068
doi: 10.21037/apm-21-3068
|
5 |
SEOANE P I, LEE B, HOYLE C, et al. The NLRP3-inflammasome as a sensor of organelle dysfunction[J]. J Cell Biol,2020,219(12):e202006194. doi:10.1083/jcb.202006194
doi: 10.1083/jcb.202006194
|
6 |
陆佳伟,刘效谷,张文波. LncRNA及miRNA对NLRP3炎症小体信号的调控机制及其在相关疾病中的意义[J]. 实用医学杂志,2020,36(22):3149-3152.
|
7 |
LIU X, CHEN J, YUE S, et al. NLRP3-mediated IL-1β in regulating the imbalance between Th17 and Treg in experimental autoimmune prostatitis[J]. Sci Rep,2024,14(1):18829. doi:10.1038/s41598-024-69512-2
doi: 10.1038/s41598-024-69512-2
|
8 |
MA C G, LIU Y N, WANG H D. NLRP3 inflammasome in expressed prostatic secretions as a potential biomarker of chronic prostatitis/chronic pelvic pain syndrome[J]. Adv Clin Exp Med,2024. doi:10.17219/acem/192548 . Online ahead of print.
doi: 10.17219/acem/192548
|
9 |
陆良喜,史宏,黄志敏,等. 前列腺小体miRNA-146a/TLR-4/NF-κB通路在EAP大鼠慢性炎症中的作用及大火草干预的研究[J]. 中国全科医学,2023,26(20):2518-2524.
|
10 |
中华中医药学会中药实验药理专业委员会. 慢性前列腺炎动物模型制备规范(草案)[J]. 中国实验方剂学杂志,2018,24(19):10-14.
|
11 |
ZHOU Y, WANG J H, HAN J P, et al. Dihydroartemisinin ameliorates chronic nonbacterial prostatitis and epithelial cellular inflammation by blocking the E2F7/HIF1α pathway[J]. Inflamm Res,2022,71:449-460. doi:10.1007/s00011-022-01544-8
doi: 10.1007/s00011-022-01544-8
|
12 |
SEUMEN C H T, GRIMM T M, HAUCK C R. Protein phosphatases in TLR signaling[J]. Cell Commun Signal,2021,19(1):45. doi:10.1186/s12964-021-00722-1
doi: 10.1186/s12964-021-00722-1
|
13 |
ZHU G Q, JEON S H, LEE K W, et al. Electric stimulation hyperthermia relieves inflammation via the suppressor of cytokine signaling 3-toll like receptor 4 pathway in a prostatitis rat model[J]. World J Mens Health,2020,38:359-369. doi:10.5534/wjmh.190078
doi: 10.5534/wjmh.190078
|
14 |
JEON S H, ZhU G Q, KAON E B, et al. Extracorporeal shock wave therapy decreases COX-2 by inhibiting TLR4-NFκB pathway in a prostatitis rat model[J]. Prostate,2019,79:1498-1504. doi:10.1002/pros.23880
doi: 10.1002/pros.23880
|
15 |
KIM S, PIAO J J, BANG S, et al. Non-Invasive Radiofrequency Hyperthermia Attenuates HMGB1/TLR4/NF-kappaB Inflammatory Axis in a Chronic Prostatitis/Chronic Pelvic Pain Syndrome Rat Model[J]. World J Mens Health,2024,42(4):855- 864. doi:10.5534/wjmh.230230
doi: 10.5534/wjmh.230230
|
16 |
HUANG Y, XU W, ZHOU R. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol,2021,18(9):2114-2127. doi:10.1038/s41423-021-00740-6
doi: 10.1038/s41423-021-00740-6
|
17 |
DONG Y, BONIN J P, DEVANT P, et al.Structural transitions enable interleukin-18 maturation and signaling[J]. Immunity,2024,57(7):1533-1548. doi:10.1016/j.immuni.2024.04.015
doi: 10.1016/j.immuni.2024.04.015
|
18 |
KELLEY N, JELTEMA D, DUAN Y, et al. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation[J]. Int J Mol Sci,2019,20: 3328. doi:10.3390/ijms20133328
doi: 10.3390/ijms20133328
|
19 |
FENG R, MENG T, ZHAO X, et al.Isoliquiritigenin reduces experimental autoimmune prostatitis by facilitating Nrf2 activation and suppressing the NLRP3 inflammasome pathway[J]. Mol Immunol,2024,169:37-49. doi:10.1016/j.molimm.2024.03.002
doi: 10.1016/j.molimm.2024.03.002
|
20 |
LIU S J, GUO B D, GAO Q H, et al. Ursolic acid alleviates chronic prostatitis via regulating NLRP3 inflammasome-mediated Caspase-1/GSDMD pyroptosis pathway[J]. Phytother Res,2024,38(1):82-97. doi:10.1002/ptr.8034
doi: 10.1002/ptr.8034
|
21 |
CHEN L, LIU Y, YUE S, et al. P2X7R Modulates NEK7-NLRP3 Interaction to Exacerbate Experimental Autoimmune Prostatitis via GSDMD-mediated Prostate Epithelial Cell Pyroptosis[J]. Int J Biol Sci,2024,20(9):3393-3411. doi:10.7150/ijbs.94704
doi: 10.7150/ijbs.94704
|
22 |
ZHANG F, MENG T, FENG R, et al. MIF aggravates experimental autoimmune prostatitis through activation of the NLRP3 inflammasome via the PI3K/AKT pathway[J]. Int Immunopharmacol,2024,141:112891. doi:10.1016/j.intimp.2024.112891
doi: 10.1016/j.intimp.2024.112891
|
23 |
HUA X, ZHANG J, CHEN J, et al. Sodium butyrate alleviates experimental autoimmune prostatitis by inhibiting oxidative stress and NLRP3 inflammasome activation via the Nrf2/HO-1 pathway[J]. Prostate,2024,84(7):666-681. doi:10.1002/pros.24683
doi: 10.1002/pros.24683
|
24 |
ZHAO X, FENG R, CHEN J, et al. 4-Octyl itaconate alleviates experimental autoimmune prostatitis by inhibiting the NLRP3 inflammasome-induced pyroptosis through activating Nrf2/HO-1 pathway[J]. Prostate,2024,84(4):329-341. doi:10.1002/pros.24652
doi: 10.1002/pros.24652
|
25 |
ZHANG J, CHEN J, JIANG Q, et al. Resolvin D1 Attenuates Inflammation and Pelvic Pain Associated with EAP by Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation via the Nrf2/HO-1 Pathway[J]. J Inflamm Res,2023,16: 3365-3379. doi:10.2147/jir.s408111
doi: 10.2147/jir.s408111
|
26 |
KINRA M, NAMPOOTHIRI M, ARORA D, et al. Reviewing the importance of TLR-NLRP3-pyroptosis pathway and mechanism of experimental NLRP3 inflammasome inhibitors[J]. Scand J Immunol,2022,95(2):e13124. doi:10.1111/sji.13124
doi: 10.1111/sji.13124
|
27 |
韩晨阳,张晓玲,杨毅,等. α-突触核蛋白激活NLRP3炎性小体介导神经细胞焦亡的发生[J]. 中国临床药理学与治疗学,2019,24(6):637-643.
|
28 |
BAE W J, SHIN D, PIAO J J, et al. Extracorporeal Shockwave Therapy Alleviates Inflammatory Pain by Down-Regulating NLRP3 Inflammasome in Experimental Chronic Prostatitis and Chronic Pelvic Pain Syndrome[J]. World J Mens Health, 2024,42(1):157-167. doi:10.5534/wjmh.220241
doi: 10.5534/wjmh.220241
|