1 |
YEGHIAZARIANS Y, JNEID H, TIETJENS J R, et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association[J]. Circulation, 2021,144(3): e56-e67. doi:10.1161/cir.0000000000000988
doi: 10.1161/cir.0000000000000988
|
2 |
SOMERS V K, WHITE D P, AMIN R, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing[J]. J Am Coll Cardiol, 2008,52(8): 686-717.
|
3 |
HLA K M, YOUNG T, HAGEN E W, et al. Coronary heart disease incidence in sleep disordered breathing: the Wisconsin Sleep Cohort Study[J]. Sleep, 2015,38(5): 677-684. doi:10.5665/sleep.4654
doi: 10.5665/sleep.4654
|
4 |
TURNBULL C D, SEN D, KOHLER M, et al. Effect of Supplemental Oxygen on Blood Pressure in Obstructive Sleep Apnea (SOX). A Randomized Continuous Positive Airway Pressure Withdrawal Trial[J]. Am J Respir Crit Care Med, 2019,199(2): 211-219.
|
5 |
LAVIE L, LAVIE P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link[J]. Eur Respir J, 2009,33(6): 1467-1484.
|
6 |
KHEIRANDISH-GOZAL L, GOZAL D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines[J]. Int J Mol Sci, 2019,20(3):459. doi:10.3390/ijms20030459
doi: 10.3390/ijms20030459
|
7 |
DONG Z, SHANMUGHAPRIYA S, TOMAR D, et al. Mitochondrial Ca(2+) Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity[J]. Mol Cell, 2017,65(6): 1014-1028. doi:10.1016/j.molcel.2017.01.032
doi: 10.1016/j.molcel.2017.01.032
|
8 |
HUANG J, XIE H, YANG Y, et al. The role of ferroptosis and endoplasmic reticulum stress in intermittent hypoxia-induced myocardial injury[J]. Sleep Breath, 2023,27(3): 1005-1011. doi:10.1007/s11325-022-02692-1
doi: 10.1007/s11325-022-02692-1
|
9 |
ZHAOLIN Z, GUOHUA L, SHIYUAN W, et al. Role of pyroptosis in cardiovascular disease[J]. Cell Prolif, 2019,52(2): e12563. doi:10.1111/cpr.12563
doi: 10.1111/cpr.12563
|
10 |
LEE S, CHOI E, CHA M J, et al. Looking for Pyroptosis-Modulating miRNAs as a Therapeutic Target for Improving Myocardium Survival[J]. Mediators Inflamm, 2015,2015: 254871.
|
11 |
LIU W, ZHAO D, WU X, et al. Rapamycin ameliorates chronic intermittent hypoxia and sleep deprivation-induced renal damage via the mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling pathway[J]. Bioengineered, 2022,13(3): 5537-5550.
|
12 |
XU J, LI Q, XU C Y, et al. Obstructive sleep apnea aggravates neuroinflammation and pyroptosis in early brain injury following subarachnoid hemorrhage via ASC/HIF-1α pathway[J]. Neural Regen Res, 2022,17(11): 2537-2543.
|
13 |
MINARD A, BAUER C C, WRIGHT D J, et al. Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease[J]. Cells, 2018,7(6):52.
|
14 |
ZHU X, CHU P B, PEYTON M, et al. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene[J]. FEBS Lett, 1995,373(3): 193-198. doi:10.1016/0014-5793(95)01038-g
doi: 10.1016/0014-5793(95)01038-g
|
15 |
SHARMA S, HOPKINS C R. Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases[J]. J Med Chem, 2019,62(17): 7589-7602. doi:10.1021/acs.jmedchem.8b01954
doi: 10.1021/acs.jmedchem.8b01954
|
16 |
WEN W, YAO Q, CHEN Y, et al. Transient receptor potential canonical 5 channel is involved in the cardiac damage related to obstructive sleep apnea-hypopnea syndrome in rats[J]. Ann Palliat Med, 2020,9(3): 895-902.
|
17 |
李瑜, 古丽娜孜·吐拉洪, 陈玉岚, 等. 慢性间歇性低氧对OSAHS大鼠心肌细胞焦亡的影响[J]. 山东医药, 2023,63(7): 38-41. doi:10.3969/j.issn.1002-266X.2023.07.009
doi: 10.3969/j.issn.1002-266X.2023.07.009
|
18 |
HU Q, ZHANG T, YI L, et al. Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells[J]. Biofactors, 2018,44(2): 123-136. doi:10.1002/biof.1395
doi: 10.1002/biof.1395
|
19 |
MAN S M, KARKI R, KANNEGANTI T D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017,277(1): 61-75.
|
20 |
TOLDO S, MEZZAROMA E, BUCKLEY L F, et al. Targeting the NLRP3 inflammasome in cardiovascular diseases[J]. Pharmacol Ther, 2022,236: 108053. doi:10.1016/j.pharmthera.2021.108053
doi: 10.1016/j.pharmthera.2021.108053
|
21 |
NILIUS B, FLOCKERZI V. Mammalian transient receptor potential (TRP) cation channels. Preface[J]. Handb Exp Pharmacol, 2014,223: v - vi. doi:10.1007/978-3-319-05161-1
doi: 10.1007/978-3-319-05161-1
|
22 |
CHEN X, SOOCH G, DEMAREE I S, et al. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now[J]. Cells, 2020,9(9):1983. doi:10.3390/cells9091983
doi: 10.3390/cells9091983
|
23 |
崔艺璇, 周翔, 刘宽, 等. 瞬时受体电位通道蛋白5对糖尿病性心肌病炎症的调节作用[J]. 中国药理学通报, 2022,38(2): 201-208.
|
24 |
PARK M K, CHOI B Y, KHO A R, et al. Effects of Transient Receptor Potential Cation 5 (TRPC5) Inhibitor, NU6027, on Hippocampal Neuronal Death after Traumatic Brain Injury[J]. Int J Mol Sci, 2020,21(21):8256. doi:10.3390/ijms21218256
doi: 10.3390/ijms21218256
|
25 |
FRANGOGIANNIS N G. Cardiac fibrosis[J]. Cardiovasc Res, 2021,117(6): 1450-1488. doi:10.1093/cvr/cvaa324
doi: 10.1093/cvr/cvaa324
|
26 |
QUAGLIARIELLO V, De LAURENTIIS M, REA D, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin[J]. Cardiovasc Diabetol, 2021,20(1): 150.
|
27 |
LOI H, KRAMAR S, LABORDE C, et al. Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice[J]. Int J Mol Sci, 2021,22(17):9393. doi:10.3390/ijms22179393
doi: 10.3390/ijms22179393
|
28 |
DOMÍNGUEZ-RODRÍGUEZ A, MAYORAL-GONZALEZ I, AVILA-MEDINA J, et al. Urocortin-2 Prevents Dysregulation of Ca(2+) Homeostasis and Improves Early Cardiac Remodeling After Ischemia and Reperfusion[J]. Front Physiol, 2018,9: 813.
|