1 |
MARKOV P V, GHAFARI M, BEER M, et al. The evolution of SARS-CoV-2 [J]. Nat Rev Microbiol, 2023, 21(6): 361-379. doi:10.1038/s41579-023-00878-2
doi: 10.1038/s41579-023-00878-2
|
2 |
ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579(7798): 270-273. doi:10.1038/s41586-020-2012-7
doi: 10.1038/s41586-020-2012-7
|
3 |
BRANTL S. Regulatory mechanisms employed by cis-encoded antisense RNAs. [J]. Curr Opin Microbiol, 2007, 10(2): 102-109. doi:10.1016/j.mib.2007.03.012
doi: 10.1016/j.mib.2007.03.012
|
4 |
CHEN N, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J]. Lancet, 2020, 395(10223): 507-513. doi:10.1016/s0140-6736(20)30211-7
doi: 10.1016/s0140-6736(20)30211-7
|
5 |
CARABELLI A M, PEACOCK T P, THORNE L G, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness [J]. Nat Rev Microbiol, 2023, 21(3): 162-177.
|
6 |
YÜCE M, FILIZTEKIN E, ÖZKAYA K G. COVID-19 diagnosis -A review of current methods [J]. Biosens Bioelectron, 2021, 172: 112752. doi:10.1016/j.bios.2020.112752
doi: 10.1016/j.bios.2020.112752
|
7 |
许玉玲, 王海霞, 李金月, 等. 新型冠状病毒抗原检测胶体金法与核酸检测实时荧光RT-PCR方法比较 [J]. 实用医学杂志, 2022, 38(7): 791-794. doi:10.3969/j.issn.1006-5725.2022.07.003
doi: 10.3969/j.issn.1006-5725.2022.07.003
|
8 |
KWAN L Y, JOO K O, RYOUN K H, et al. Clinical and epidemiologic characteristics of inconclusive results in SARS-CoV-2 RT-PCR assays [J]. BMC Infect Dis, 2021, 21(1):851. doi:10.1186/s12879-021-06534-5
doi: 10.1186/s12879-021-06534-5
|
9 |
WÖLFEL R, CORMAN V M, GUGGEMOS W, et al. Virological assessment of hospitalized patients with COVID-2019 [J]. Nature, 2020, 581(7809): 465-469. doi:10.1038/s41586-020-2196-x
doi: 10.1038/s41586-020-2196-x
|
10 |
WANG D, JIANG A, FENG J, et al. The SARS-CoV-2 subgenome landscape and its novel regulatory features [J]. Mol Cell, 2021, 81(10): 2135-2147. e5. doi:10.1016/j.molcel.2021.02.036
doi: 10.1016/j.molcel.2021.02.036
|
11 |
BRANT A C, TIAN W, MAJERCIAK V, et al. SARS-CoV-2: from its discovery to genome structure, transcription, and replication [J]. Cell Biosci, 2021, 11(1): 136. doi:10.1186/s13578-021-00643-z
doi: 10.1186/s13578-021-00643-z
|
12 |
CHANG J J Y, RAWLINSON D, PITT M E, et al. Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection [J]. Cell Rep, 2021,35(6):10910. doi:10.1016/j.celrep.2021.109108
doi: 10.1016/j.celrep.2021.109108
|
13 |
WANG M, FU A, HU B, et al. Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses [J]. Small, 2021, 17(32): e2104078. doi:10.1002/smll.202104078
doi: 10.1002/smll.202104078
|
14 |
NOMBURG J, MEYERSON M, DECAPRIO J A. Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2 [J]. Genome Med, 2020, 12(1): 108. doi:10.1186/s13073-020-00802-w
doi: 10.1186/s13073-020-00802-w
|
15 |
ZIV O, PRICE J, SHALAMOVA L, et al. The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2 [J]. Mol Cell, 2020, 80(6): 1067-1077. doi:10.1016/j.molcel.2020.11.004
doi: 10.1016/j.molcel.2020.11.004
|
16 |
FORD L, LEE C, PRAY I W, et al. Epidemiologic Characteristics Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antigen-Based Test Results, Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) Cycle Threshold Values, Subgenomic RNA, and Viral Culture Results From University Testing [J]. Clin Infect Dis, 2021, 73(6): e1348-e1355. doi:10.1093/cid/ciab303
doi: 10.1093/cid/ciab303
|
17 |
KIM J Y, BAE J Y, BAE S, et al. Diagnostic usefulness of subgenomic RNA detection of viable SARS-CoV-2 in patients with COVID-19 [J]. Clin Microbiol Infect, 2022, 28(1): 101-106. doi:10.1016/j.cmi.2021.08.009
doi: 10.1016/j.cmi.2021.08.009
|
18 |
THORNE L G, BOUHADDOU M, A-K REUSCHL, et al. Evolution of enhanced innate immune evasion by SARS-CoV-2 [J]. Nature, 2022, 602(7897): 487-495. doi:10.1038/s41586-021-04352-y
doi: 10.1038/s41586-021-04352-y
|
19 |
CARROLL T, FOX D, VAN DOREMALEN N, et al. The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters [J]. PLoS Pathog, 2022, 18(2):e1009914. doi:10.1371/journal.ppat.1009914
doi: 10.1371/journal.ppat.1009914
|
20 |
TELWATTE S, MARTIN H A, MARCZAK R, et al. Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts [J]. Methods, 2022, 201: 15-25. doi:10.1016/j.ymeth.2021.04.011
doi: 10.1016/j.ymeth.2021.04.011
|
21 |
WANG D, HU B, HU C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China [J]. JAMA, 2020, 323(11): 1061-1069. doi:10.1001/jama.2020.1585
doi: 10.1001/jama.2020.1585
|
22 |
SHRESTHA L B, FOSTER C, RAWLINSON W, et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission [J]. Rev Med Virol, 2022, 32(5): e2381. doi:10.1002/rmv.2381
doi: 10.1002/rmv.2381
|
23 |
UGOLINI C, MULRONEY L, LEGER A, et al. Nanopore ReCappable sequencing maps SARS-CoV-2 5' capping sites and provides new insights into the structure of sgRNAs [J]. Nucleic Acids Res, 2022, 50(6): 3475-3489. doi:10.1093/nar/gkac144
doi: 10.1093/nar/gkac144
|
24 |
KIM D, LEE J Y, YANG J S, et al. The Architecture of SARS-CoV-2 Transcriptome [J]. Cell, 2020, 181(4):914-921.e10. doi:10.1016/j.cell.2020.04.011
doi: 10.1016/j.cell.2020.04.011
|
25 |
TELWATTE S, KUMAR N, VALLEJO-GRACIA A, et al. Novel RT-ddPCR assays for simultaneous quantification of multiple noncoding and coding regions of SARS-CoV-2 RNA [J]. J Virol Methods, 2021, 292: 114115. doi:10.1016/j.jviromet.2021.114115
doi: 10.1016/j.jviromet.2021.114115
|
26 |
乔乔, 吴涛, 朱小娟, 等. 新型冠状病毒亚基因组RNA荧光重组酶介导等温扩增检测方法的建立及评价 [J]. 中国病毒病杂志, 2022, 12(6): 444-447.
|
27 |
UGOLINI C, MULRONEY L, LEGER A, et al. Nanopore ReCappable sequencing maps SARS-CoV-2 5' capping sites and provides new insights into the structure of sgRNAs [J]. Nucleic Acids Res, 2022, 50(6): 3475-3489. doi:10.1093/nar/gkac144
doi: 10.1093/nar/gkac144
|
28 |
DAGOTTO G, MERCADO N B, MARTINEZ D R, et al. Comparison of Subgenomic and Total RNA in SARS-CoV-2 Challenged Rhesus Macaques [J]. J Virol, 2021, 95(8):e02370-20. doi:10.1128/jvi.02370-20
doi: 10.1128/jvi.02370-20
|
29 |
ZHANG C, CUI H, GUO Z, et al. SARS-CoV-2 Virus Culture, Genomic and Subgenomic RNA Load, and Rapid Antigen Test in Experimentally Infected Syrian Hamsters [J]. J Virol, 2022, 96(18): e0103422. doi:10.1128/jvi.01034-22
doi: 10.1128/jvi.01034-22
|
30 |
BRAVO M S, BERENGUA C, MARÍN P, et al. Viral Culture Confirmed SARS-CoV-2 Subgenomic RNA Value as a Good Surrogate Marker of Infectivity [J]. J Clin Microbiol, 2022, 60(1):e0160921. doi:10.1128/jcm.01609-21
doi: 10.1128/jcm.01609-21
|
31 |
THORNE L G, BOUHADDOU M, REUSCHL A K, et al. Evolution of enhanced innate immune evasion by SARS-CoV-2 [J]. Nature, 2022, 602(7897): 487-495. doi:10.1038/s41586-021-04352-y
doi: 10.1038/s41586-021-04352-y
|
32 |
AVANZATO V A, MATSON M J, SEIFERT S N, et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer [J]. Cell, 2020, 183(7): 1901-1912.e9. doi:10.1016/j.cell.2020.10.049
doi: 10.1016/j.cell.2020.10.049
|
33 |
栾涛,杨罡,王帅颖,等. “长新冠”综合征研究最新进展[J]. 实用医学杂志, 2023,39(10):1195-1200.
|
34 |
李娜,白彝华,蒋红樱,等. 长期维持性透析患者的衰弱现况及其影响因素[J]. 实用医学杂志, 2024,40(3):330-335.
|