1 |
GOLESTANI A, SHOBEIRI P, SADEGHI-NAINI M, et al. Epidemiology of Traumatic Spinal Cord Injury in Developing Countries from 2009 to 2020: A Systematic Review and Meta-Analysis[J]. Neuroepidemiology, 2022,56(4):219-239.
|
2 |
汤艳, 徐军, 洪永锋. 脑机接口训练用于脊髓损伤患者下肢运动功能改善的效果[J]. 实用医学杂志, 2022,38(21):2709-2714.
|
3 |
王锋, 李靖龙. 下肢外骨骼机器人在脊髓损伤中的应用研究进展[J]. 实用医学杂志, 2022,38(23):3012-3016.
|
4 |
LIU J Y, LI Y J, CONG X Y, et al. Association between brain N-acetylaspartate levels and sensory and motor dysfunction in patients who have spinal cord injury with spasticity: an observational case-control study[J]. Neural Regen Res, 2023,18(3):582-586.
|
5 |
FELIX E R, CARDENAS D D, BRYCE T N, et al. Prevalence and Impact of Neuropathic and Nonneuropathic Pain in Chronic Spinal Cord Injury[J]. Arch Phys Med Rehabil, 2022,103(4):729-737.
|
6 |
HARMISON L E, BECKHAM J W, ADELMAN D S. Autonomic dysreflexia in patients with spinal cord injury[J]. Nursing, 2023,53(1):21-26.
|
7 |
BUDD M A, GATER D J, CHANNELL I. Psychosocial Consequences of Spinal Cord Injury: A Narrative Review[J]. J Pers Med, 2022,12(7):1178.
|
8 |
HELED E, TAL K, ZEILIG G. Does lack of brain injury mean lack of cognitive impairment in traumatic spinal cord injury?[J]. J Spinal Cord Med, 2022,45(3):373-380.
|
9 |
LAL R, NONICA L, KIRAN B, et al. Bone mineral density in patients with chronic spinal cord injury: An observational study[J]. Asian J Med Sci, 2023,14(2):178-182.
|
10 |
龚瑜,蔺俊斌,郝赤子,等. 脑机接口在背髓损伤康复中的应用进展[J]. 中国康复医学杂志, 2020,35(6):744-748.
|
11 |
DAVIS K C, MESCHEDE K B, CAJIGAS I, et al. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury[J]. J Neuroeng Rehabil, 2022,19(1):53.
|
12 |
MUSK E. An Integrated Brain-Machine Interface Platform With Thousands of Channels[J]. J Med Internet Res, 2019,21(10):e16194.
|
13 |
WANG Y, YANG X, ZHANG X, et al. Implantable intracortical microelectrodes: reviewing the present with a focus on the future[J]. Microsyst Nanoeng, 2023,DOI:10.1038/S41378-022-00451-6 .
doi: 10.1038/S41378-022-00451-6
|
14 |
GUO Z, WANG F, WANG L, et al. A flexible neural implant with ultrathin substrate for low-invasive brain-computer interface applications[J]. Microsyst Nanoeng, 2022,8:133.
|
15 |
RAJAN R, GARG K, SAINI A, et al. GPi-DBS for KMT2B-Associated Dystonia: Systematic Review and Meta-Analysis[J]. Mov Disord Clin Pract, 2022,9(1):31-37.
|
16 |
SCANGOS K W, KHAMBHATI A N, DALY P M, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression[J]. Nat Med, 2021,27(10):1696-1700.
|
17 |
ROOIJ S J H, SIPPEL L M, MCDONALD W M, et al. Defining focal brain stimulation targets for PTSD using neuroimaging[J]. Depress Anxiety, 2021,38(7):768-785.
|
18 |
MITCHELL P, LEE S, YOO P E, et al. Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients: The Stentrode With Thought-Controlled Digital Switch (SWITCH) Study[J]. JAMA Neurol, 2023,DOI:10.1001/JAMANEUROL.2022.4847 .
doi: 10.1001/JAMANEUROL.2022.4847
|
19 |
WENCHANG Z, FUCHUN S, HANG W, et al. Asynchronous Brain-Computer Interface Shared Control of Robotic Grasping[J]. Tsinghua Sci Technol, 2019,24(3):360-370.
|
20 |
GUERMANDI M, COSSETTINI A, BENATTI S, et al. A Wireless System for EEG Acquisition and Processing in an Earbud Form Factor with 600 Hours Battery Lifetime[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022:3139-3145.
|
21 |
HSIEH J C, ALAWIEH H, LI Y, et al. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface[J]. Biosens Bioelectron, 2022,DOI: 10.1016/j.bios. 2022.114756 .
doi: 10.1016/j.bios. 2022.114756
|
22 |
FENG J, LI Y, JIANG C, et al. Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning[J]. Front Hum Neurosci, 2022,16:1068165.
|
23 |
宋昊, 徐颂, 刘国明, 等. 基于独立成分分析的非侵入式脑-机接口眼电伪迹自动去除算法[J]. 生物医学工程学杂志, 2022,39(6):1074-1081.
|
24 |
WEN S, YIN A, FURLANELLO T, et al. Rapid adaptation of brain-computer interfaces to new neuronal ensembles or participants via generative modelling[J]. Nat Biomed Eng, 2023,7(4):546-558.
|
25 |
ZORAN N. Brain-computer interfaces for human gait restoration[J]. Control Theory Technol, 2021,19(4):516-528.
|
26 |
BENABID A L, COSTECALDE T, ELISEYEV A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration[J]. Lancet Neurol, 2019,18(12):1122.
|
27 |
SAMEJIMA S, KHORASANI A, RANGANATHAN V, et al. Brain-Computer-Spinal Interface Restores Upper Limb Function After Spinal Cord Injury[J]. IEEE Trans Neural Syst Rehabil Eng, 2021,29(1):1233-1242.
|
28 |
JOVANOVIC L I, KAPADIA N, ZIVANOVIC V, et al. Brain-computer interface-triggered functional electrical stimulation therapy for rehabilitation of reaching and grasping after spinal cord injury: a feasibility study[J]. Spinal Cord Ser Cases, 2021,7(1):24.
|
29 |
PANDARINATH C, BENSMAIA S J. The science and engineering behind sensitized brain-controlled bionic hands[J]. Physiol Rev, 2022,102(2):551-604.
|
30 |
GANZER P D, COLACHIS S T, SCHWEMMER M A, et al. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface[J]. Cell, 2020,181(4):763-773.
|
31 |
FLESHER S N, DOWNEY J E, WEISS J M, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control[J]. Science, 2021,372(6544):831-836.
|
32 |
KAZIM S F, BOWERS C A, COLE C D, et al. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes[J]. Mol Neurobiol, 2021,58(11):5494-5516.
|
33 |
ATHANASIOU A, MITSOPOULOS K, PRAFTSIOTIS A, et al. Neurorehabilitation Through Synergistic Man-Machine Interfaces Promoting Dormant Neuroplasticity in Spinal Cord Injury: Protocol for a Nonrandomized Controlled Trial[J]. JMIR Res Protoc, 2022,11(9):e41152.
|
34 |
FAIRCLOUGH S H, STAMP K, DOBBINS C, et al. Computer games as distraction from PAIN: Effects of hardware and difficulty on pain tolerance and subjective IMMERSION[J]. International Journal of Human-Computer Studies, 2020,DOI:10.1016/j.ijhcs.2020.102427 .
doi: 10.1016/j.ijhcs.2020.102427
|
35 |
WANG R, ZHU J, ZHANG J, et al. Psychological assessments of a senile patient with tetraplegia who received brain-computer interface implantation: a case report[J]. Neurol Sci, 2022,43(2):1427-1430.
|
36 |
MCGLYNN E, NABAEI V, REN E, et al. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics[J]. Adv Sci (Weinh), 2021,8(10):2002693.
|
37 |
ANDREA B, SIMONE F, HIROSHI H, et al. An Introductory Tutorial on Brain-Computer Interfaces and Their Applications[J]. Electronics, 2021,10(5):560.
|
38 |
BELWAFI K, GANNOUNI S, ABOALSAMH H. Embedded Brain Computer Interface: State-of-the-Art in Research[J]. Sensors (Basel), 2021,21(13):4293.
|