The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (11): 1607-1612.doi: 10.3969/j.issn.1006-5725.2024.11.024
• Reviews • Previous Articles
Huinan ZHOU,Kewei QIN,Lijun. ZHOU()
Received:
2023-09-21
Online:
2024-06-10
Published:
2024-06-13
Contact:
Lijun. ZHOU
E-mail:hzzhoulj@126.com
CLC Number:
Huinan ZHOU,Kewei QIN,Lijun. ZHOU. Current research status and clinical application progress of the immune checkpoint LAG⁃3 and its targeting drugs[J]. The Journal of Practical Medicine, 2024, 40(11): 1607-1612.
1 |
MING Q, CELIAS D P, WU C, et al. LAG3 ectodomain structure reveals functional interfaces for ligand and antibody recognition[J]. Nat Immunol, 2022,23(7): 1031-1041. doi:10.1038/s41590-022-01238-7
doi: 10.1038/s41590-022-01238-7 |
2 |
TRIEBEL F, JITSUKAWA S, BAIXERAS E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990,171(5): 1393-1405. doi:10.1084/jem.171.5.1393
doi: 10.1084/jem.171.5.1393 |
3 |
WORKMAN C J, DUGGER K J, VIGNALI D A. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3[J]. J Immunol, 2002,169(10): 5392-5395. doi:10.4049/jimmunol.169.10.5392
doi: 10.4049/jimmunol.169.10.5392 |
4 |
MAEDA T K, SUGIURA D, OKAZAKI I M, et al. Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation[J]. J Biol Chem, 2019,294(15): 6017-6026. doi:10.1074/jbc.ra119.007455
doi: 10.1074/jbc.ra119.007455 |
5 |
XU F, LIU J, LIU D, et al. LSECtin Expressed on Melanoma Cells Promotes Tumor Progression by Inhibiting Antitumor T-cell Responses[J]. Cancer Res, 2014,74(13): 3418-3428. doi:10.1158/0008-5472.can-13-2690
doi: 10.1158/0008-5472.can-13-2690 |
6 |
KOUO T, HUANG L, PUCSEK A B, et al. Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells[J]. Cancer Immunol Res, 2015,3(4): 412-423. doi:10.1158/2326-6066.cir-14-0150
doi: 10.1158/2326-6066.cir-14-0150 |
7 |
WANG J, SANMAMED M F, DATAR I, et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3[J]. Cell, 2019,176(1-2): 334-347. doi:10.1016/j.cell.2018.11.010
doi: 10.1016/j.cell.2018.11.010 |
8 |
贾王强, 倪红谚, 袁龙. FGL-1作为LAG-3主要的免疫抑制配体在恶性肿瘤中的研究进展[J]. 实用医学杂志, 2021,37(4): 547-551. doi:10.3969/j.issn.1006-5725.2021.04.026
doi: 10.3969/j.issn.1006-5725.2021.04.026 |
9 |
MARUHASHI T, SUGIURA D, OKAZAKI I M, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity[J]. Immunity, 2022,55(5): 912-924. doi:10.1016/j.immuni.2022.03.013
doi: 10.1016/j.immuni.2022.03.013 |
10 |
GUY C, MITREA D M, CHOU P, et al. LAG3 associates with TCR-CD3 complexes and suppresses signaling by driving co-receptor-Lck dissociation[J]. Nat Immunol, 2022,23(5): 757-767. doi:10.1038/s41590-022-01176-4
doi: 10.1038/s41590-022-01176-4 |
11 | MAO X, OU M T, KARUPPAGOUNDER S S, et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3[J]. Science, 2016,353(6307):aah3374. |
12 |
GREBINOSKI S, ZHANG Q, CILLO A R, et al. Autoreactive CD8(+) T cells are restrained by an exhaustion-like program that is maintained by LAG3[J]. Nat Immunol, 2022,23(6): 868-877. doi:10.1038/s41590-022-01210-5
doi: 10.1038/s41590-022-01210-5 |
13 |
KURACHI M. CD8(+) T cell exhaustion[J]. Semin Immunopathol, 2019,41(3): 327-337. doi:10.1007/s00281-019-00744-5
doi: 10.1007/s00281-019-00744-5 |
14 |
DAI E, ZHU Z, WAHED S, et al. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy[J]. Mol Cancer, 2021,20(1): 171. doi:10.1186/s12943-021-01464-x
doi: 10.1186/s12943-021-01464-x |
15 |
SUNG E, KO M, WON J, et al. LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation[J]. Mol Ther, 2022,30(8): 2800-2816. doi:10.1016/j.ymthe.2022.05.003
doi: 10.1016/j.ymthe.2022.05.003 |
16 |
CAMISASCHI C, DE FILIPPO A, BERETTA V, et al. Alternative activation of human plasmacytoid DCs in vitro and in melanoma lesions: involvement of LAG-3[J]. J Invest Dermatol, 2014,134(7): 1893-1902. doi:10.1038/jid.2014.29
doi: 10.1038/jid.2014.29 |
17 |
YANG L L, MAO L, WU H, et al. pDC depletion induced by CD317 blockade drives the antitumor immune response in head and neck squamous cell carcinoma[J]. Oral Oncol, 2019,96: 131-139. doi:10.1016/j.oraloncology.2019.07.019
doi: 10.1016/j.oraloncology.2019.07.019 |
18 |
LIANG B, WORKMAN C, LEE J, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II[J]. J Immunol, 2008,180(9): 5916-5926. doi:10.4049/jimmunol.180.9.5916
doi: 10.4049/jimmunol.180.9.5916 |
19 |
GHOSH S, SHARMA G, TRAVERS J, et al. TSR-033, a Novel Therapeutic Antibody Targeting LAG-3, Enhances T-Cell Function and the Activity of PD-1 Blockade In Vitro and In Vivo[J]. Mol Cancer Ther, 2019,18(3): 632-641. doi:10.1158/1535-7163.mct-18-0836
doi: 10.1158/1535-7163.mct-18-0836 |
20 |
邓俊, 王均, 高嫦娥, 等. 免疫检查点抑制剂毒性预测生物标志物的研究进展[J]. 实用医学杂志, 2023,39(20): 2561-2565. doi:10.3969/j.issn.1006-5725.2023.20.001
doi: 10.3969/j.issn.1006-5725.2023.20.001 |
21 | 张陈, 刘平, 于晓杰, 等. 新型全人源LAG3单克隆抗体的体外抗肿瘤作用及其机制初探[J]. 中国肿瘤生物治疗杂志, 2022,29(5): 419-425. |
22 |
PREVITE D M, MARTINS C P, O'CONNOR E C, et al. Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4(+) T Cells[J]. Cell Rep, 2019,27(1): 129-141. doi:10.1016/j.celrep.2019.03.004
doi: 10.1016/j.celrep.2019.03.004 |
23 |
HUANG R Y, FRANCOIS A, MCGRAY A R, et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer[J]. Oncoimmunology, 2017,6(1): e1249561. doi:10.1080/2162402x.2016.1249561
doi: 10.1080/2162402x.2016.1249561 |
24 |
HUANG R Y, EPPOLITO C, LELE S, et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model[J]. Oncotarget, 2015,6(29): 27359-27377. doi:10.18632/oncotarget.4751
doi: 10.18632/oncotarget.4751 |
25 |
TAWBI H A, SCHADENDORF D, LIPSON E J, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma[J]. N Engl J Med, 2022,386(1): 24-34. doi:10.1056/nejmoa2109970
doi: 10.1056/nejmoa2109970 |
26 |
AMARIA R N, POSTOW M, BURTON E M, et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma[J]. Nature, 2022,611(7934): 155-160. doi:10.1038/s41586-022-05368-8
doi: 10.1038/s41586-022-05368-8 |
27 |
WANG J B, QIU Q Z, ZHENG Q L, et al. Tumor Immunophenotyping-Derived Signature Identifies Prognosis and Neoadjuvant Immunotherapeutic Responsiveness in Gastric Cancer[J]. Adv Sci (Weinh), 2023, 10(15):e2207417. doi:10.1002/advs.202207417
doi: 10.1002/advs.202207417 |
28 |
THUDIUM K, SELBY M, ZORN J A, et al. Preclinical Characterization of Relatlimab, a Human LAG-3-Blocking Antibody, Alone or in Combination with Nivolumab[J]. Cancer Immunol Res, 2022,10(10): 1175-1189. doi:10.1158/2326-6066.cir-22-0057
doi: 10.1158/2326-6066.cir-22-0057 |
29 |
SANGRO B, NUMATA K, HUANG Y, et al. Relatlimab plus nivolumab in patients with advanced hepatocellular carcinoma who are naive to immuno-oncology therapy but progressed on tyrosine kinase inhibitors, a phase 2, randomized, open-label study: RELATIVITY-073[J]. Ann Oncol, 2021,32: S117. doi:10.1016/j.annonc.2021.05.116
doi: 10.1016/j.annonc.2021.05.116 |
30 |
HAMID O, WANG D, KIM T M, et al. Clinical activity of fianlimab (REGN3767), a human anti-LAG-3 monoclonal antibody, combined with cemiplimab (anti-PD-1) in patients (pts) with advanced melanoma.[J]. J Clin Oncol, 2021,39():9515. doi:10.1200/jco.2021.39.15_suppl.9515
doi: 10.1200/jco.2021.39.15_suppl.9515 |
31 |
HAMID O, LEWIS K D, WEISE A, et al. 400P Phase I study of fianlimab, a human lymphocyte activation gene-3 (LAG-3) monoclonal antibody, in combination with cemiplimab in advanced melanoma (mel)[J]. Ann Oncol, 2022,33: S1598. doi:10.1016/j.annonc.2022.10.431
doi: 10.1016/j.annonc.2022.10.431 |
32 |
YU X, HUANG X, CHEN X, et al. Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy[J]. MAbs, 2019,11(6): 1139-1148. doi:10.1080/19420862.2019.1629239
doi: 10.1080/19420862.2019.1629239 |
33 |
SHI Y, LUO S, ZHOU H, et al. Phase I study of LBL-007, a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody in patients with advanced solid tumors[J]. J Clin Oncol, 2021,39(): 2523. doi:10.1200/jco.2021.39.15_suppl.2523
doi: 10.1200/jco.2021.39.15_suppl.2523 |
34 |
BAI X, LI M, PU X X, et al. Anti-LAG-3 antibody LBL-007 in combination with toripalimab in patients with unresectable or metastatic melanoma: A phase., open-label, multicenter, dose escalation/expansion study[J]. J Clin Oncol, 2022,40():9538. doi:10.1200/jco.2022.40.16_suppl.9538
doi: 10.1200/jco.2022.40.16_suppl.9538 |
35 |
RADER C. Bispecific antibodies in cancer immunotherapy[J]. Curr Opin Biotechnol, 2020,65: 9-16. doi:10.1016/j.copbio.2019.11.020
doi: 10.1016/j.copbio.2019.11.020 |
36 |
WANG J, ASCH A S, HAMAD N, et al. A Phase 1, Open-Label Study of MGD013, a Bispecific DART® Molecule Binding PD-1 and LAG-3 in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma[J]. Blood, 2020,136: 21-22. doi:10.1182/blood-2020-139868
doi: 10.1182/blood-2020-139868 |
37 |
OH D Y, BANG Y J. HER2-targeted therapies-a role beyond breast cancer[J]. Nat Rev Clin Oncol, 2020,17(1): 33-48. doi:10.1038/s41571-019-0268-3
doi: 10.1038/s41571-019-0268-3 |
38 |
CATENACCI D, ROSALES M K, CHUNG H, et al. P-342 Margetuximab combined with anti-PD-1 (MGA012) or anti-PD-1/LAG-3 (MGD013) +/- chemotherapy in first-line therapy of advanced/metastatic HER2+ gastroesophageal junction or gastric cancer[J]. Ann Oncol, 2020, 31(3):S201. doi:10.1016/j.annonc.2020.04.424
doi: 10.1016/j.annonc.2020.04.424 |
39 |
KRAMAN M, FAROUDI M, ALLEN N L, et al. FS118, a Bispecific Antibody Targeting LAG-3 and PD-L1, Enhances T-Cell Activation Resulting in Potent Antitumor Activity[J]. Clin Cancer Res, 2020,26(13): 3333-3344. doi:10.1158/1078-0432.ccr-19-3548
doi: 10.1158/1078-0432.ccr-19-3548 |
40 |
YAP T A, LORUSSO P M, WONG D J, et al. A Phase 1 First-in-Human Study of FS118, a Tetravalent Bispecific Antibody Targeting LAG-3 and PD-L1 in Patients with Advanced Cancer and PD-L1 Resistance[J]. Clin Cancer Res, 2023,29(5): 888-898. doi:10.1158/1078-0432.ccr-22-1449
doi: 10.1158/1078-0432.ccr-22-1449 |
41 |
EDWARDS C J, SETTE A, COX C, et al. The multi-specific V(H)-based Humabody CB213 co-targets PD1 and LAG3 on T cells to promote anti-tumour activity[J]. Br J Cancer, 2022,126(8): 1168-1177. doi:10.1038/s41416-021-01684-4
doi: 10.1038/s41416-021-01684-4 |
42 |
LEGAT A, MABY-EL H H, BAUMGAERTNER P, et al. Vaccination with LAG-3Ig (IMP321) and Peptides Induces Specific CD4 and CD8 T-Cell Responses in Metastatic Melanoma Patients-Report of a Phase I/IIa Clinical Trial[J]. Clin Cancer Res, 2016,22(6): 1330-1340. doi:10.1158/1078-0432.ccr-15-1212
doi: 10.1158/1078-0432.ccr-15-1212 |
[1] | Wei HE,Liping LIU,Jingwei ZHUO,Xiaodong ZHANG,Tong YANG,Jubin. FENG. CCR5 blockade reduces tumor growth by inducing apoptosis and impairing immunosuppression of tumor microenvironment [J]. The Journal of Practical Medicine, 2024, 40(9): 1204-1210. |
[2] | Yuxuan DING,Lining GUO,Jiayi SHEN,Lijun. WANG. Safety and efficacy of radiotherapy and PD⁃1/PD⁃L1 inhibitor + TKI for MSS/pMMR colorectal cancer with liver metastases [J]. The Journal of Practical Medicine, 2024, 40(9): 1293-1297. |
[3] | Xiaona MENG,Xu SUN,Huaimin LIU. Advances in the study of immune checkpoint inhibitors⁃related colitis [J]. The Journal of Practical Medicine, 2024, 40(9): 1314-1319. |
[4] | Xiya MA,Hu JI,Zehua ZHU,Bo PAN,Qiang XIE,Xiaobo. YAO. The predictive value of 18F⁃FDG PET/CT metabolic heterogeneity parameters combined with clinical features for the prognosis of esophageal squamous cell carcinoma before definitive radiochemotherapy [J]. The Journal of Practical Medicine, 2024, 40(7): 966-971. |
[5] | Ting XU,Wei HUANG,Li YANG,Hao. YU. Tumor endothelial markers1 mediate endothelial cell angiogenesis and heart failure myocardial remodeling via MAPKs pathway [J]. The Journal of Practical Medicine, 2024, 40(6): 780-786. |
[6] | Yaqi WANG,Wanfu LI,Maimaijiang AYIGUZALI,Kramer ANIWAR,Jiarong FAN,Peng LIANG,Samusiddin. NAFISA. Study on the effect of miR⁃20a⁃5p on human nephroblastoma cell WiT49 transplanted in nude mice [J]. The Journal of Practical Medicine, 2024, 40(4): 490-495. |
[7] | Yigang TAN,Haobin KUANG,Hongmei FU,Chunyan LI,Xiaobing ZHAO,Lijing XUE. Analysis of clinical characteristics of 33 cases of tuberculosis complicated by tumor necrosis factor⁃α inhibitor in autoimmune diseases [J]. The Journal of Practical Medicine, 2024, 40(3): 378-383. |
[8] | Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI. Research progress of CD73/NT5E in glioblastoma [J]. The Journal of Practical Medicine, 2024, 40(3): 428-431. |
[9] | Kunyuan HUANG,Kehua JIANG,Qing WANG. Research progress of S100A9 in renal diseases [J]. The Journal of Practical Medicine, 2024, 40(22): 3251-3255. |
[10] | Yuqiao ZHANG,Weijian MEI. Landmark Achievements in Treating Solid Tumors with Immune Checkpoint Inhibitors [J]. The Journal of Practical Medicine, 2024, 40(2): 272-277. |
[11] | Xing LI,Youcai WANG,Yongchao XU,Ligong TANG,Fangyuan. CHENG. Application of prophylactic ileostomy through right lower abdominal specimen extraction incision in laparoscopic rectal low anterior resection [J]. The Journal of Practical Medicine, 2024, 40(19): 2720-2725. |
[12] | Rui WANG,Duo LI,Zhao PENG,Lijun CUI,Xiang ZHANG,Kaili FAN,Wenyan. WU. Effect of endoscopic tumor resection by submucosal tunnel on recurrence in patients with submucosal tumors around cardia [J]. The Journal of Practical Medicine, 2024, 40(18): 2555-2560. |
[13] | Zhaochen SUN,Junyan JIANG,Yitian. CHEN. Advancements in CAR⁃T cell research for the treatment of colorectal cancer [J]. The Journal of Practical Medicine, 2024, 40(18): 2640-2646. |
[14] | Kengjun LUO,Wenbo ZHANG,Pengcheng. JIANG. Research advance on long non⁃coding RNA regulating myeloid⁃derived suppressor cells in tumors [J]. The Journal of Practical Medicine, 2024, 40(18): 2647-2653. |
[15] | Qingwei ZHANG,Rutie. YIN. Hotspots and advances on diagnosis and treatment for cervical cancer [J]. The Journal of Practical Medicine, 2024, 40(17): 2357-2362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||