The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (3): 454-458.doi: 10.3969/j.issn.1006-5725.2025.03.023
• Reviews • Previous Articles
Received:
2024-08-26
Online:
2025-02-10
Published:
2025-02-19
Contact:
Jun. ZHOU
E-mail:zjsts8@163.com
CLC Number:
Kui XU,Jun. ZHOU. Research progress of ultrasound microbubbles in diagnosis and treatment of thyroid cancer[J]. The Journal of Practical Medicine, 2025, 41(3): 454-458.
1 |
HU S, WU X, JIANG H. Trends and projections of the global burden of thyroid cancer from 1990 to 2030[J]. J Glob Health, 2024, 14: 4084. doi:10.7189/jogh.14.04084
doi: 10.7189/jogh.14.04084 |
2 |
ZHOU X, GUO L, SHI D, et al. Biocompatible Chitosan Nanobubbles for Ultrasound-Mediated Targeted Delivery of Doxorubicin[J]. Nanoscale Res Lett, 2019, 14(1): 24. doi:10.1186/s11671-019-2853-x
doi: 10.1186/s11671-019-2853-x |
3 |
JANGJOU A, MEISAMI A H, JAMALI K, et al. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication[J]. J Biomed Sci, 2021, 28(1): 49. doi:10.1186/s12929-021-00744-4
doi: 10.1186/s12929-021-00744-4 |
4 |
LIANG X, CHEN W, WANG C, et al. A mesoporous theranostic platform for ultrasound and photoacoustic dual imaging-guided photothermal and enhanced starvation therapy for cancer[J]. Acta Biomater, 2024, 183: 264-277. doi:10.1016/j.actbio.2024.05.040
doi: 10.1016/j.actbio.2024.05.040 |
5 |
PISCAGLIA F, BOLONDI L. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations[J]. Ultrasound Med Biol, 2006, 32(9): 1369-1375. doi:10.1016/j.ultrasmedbio.2006.05.031
doi: 10.1016/j.ultrasmedbio.2006.05.031 |
6 |
BALOCH Z W, ASA S L, BARLETTA J A, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms[J]. Endocr Pathol, 2022, 33(1): 27-63. doi:10.1007/s12022-022-09707-3
doi: 10.1007/s12022-022-09707-3 |
7 |
LEONG D, GILL A J, TURCHIINI J, et al. The Prognostic Impact of Extent of Vascular Invasion in Follicular Thyroid Carcinoma[J]. World J Surg, 2023, 47(2): 412-420. doi:10.1007/s00268-022-06696-6
doi: 10.1007/s00268-022-06696-6 |
8 |
PELIZZO M R, MAZZA E I, MIAN C, et al. Medullary thyroid carcinoma[J]. Expert Rev Anticancer Ther, 2023, 23(9): 943-957. doi:10.1080/14737140.2023.2247566
doi: 10.1080/14737140.2023.2247566 |
9 |
MANIAKAS A, ZAFEREO M, CABANILLAS M E. Anaplastic Thyroid Cancer: New Horizons and Challenges[J]. Endocrinol Metab Clin North Am, 2022, 51(2): 391-401. doi:10.1016/j.ecl.2021.11.020
doi: 10.1016/j.ecl.2021.11.020 |
10 |
HVILSOM G B, LONDERO S C, HAHN C H, et al. Anaplastic thyroid carcinoma in Denmark 1996-2012: A national prospective study of 219 patients[J]. Cancer Epidemiol, 2018, 53: 65-71. doi:10.1016/j.canep.2018.01.011
doi: 10.1016/j.canep.2018.01.011 |
11 |
BAUD G, JANNIN A, MARCINIAK C, et al. Impact of Lymph Node Dissection on Postoperative Complications of Total Thyroidectomy in Patients with Thyroid Carcinoma[J]. Cancers (Basel), 2022, 14(21):5462. doi:10.3390/cancers14215462
doi: 10.3390/cancers14215462 |
12 |
FACKELMAYER O J, INABNET W R. Lobectomy or Total Thyroidectomy-Where Is the Pendulum now for Differentiated Thyroid Cancer?[J]. Surg Oncol Clin N Am, 2023, 32(2): 373-381. doi:10.1016/j.soc.2022.10.011
doi: 10.1016/j.soc.2022.10.011 |
13 |
ZHOU L, LI S, WU Y, et al. Significant dysregulation of lipid metabolism in patients with papillary thyroid carcinoma after thyroidectomy[J]. Front Endocrinol (Lausanne), 2023, 14: 1223527. doi:10.3389/fendo.2023.1223527
doi: 10.3389/fendo.2023.1223527 |
14 |
AHN S H, LEE Y J, HONG S, et al. Risk of Fractures in Thyroid Cancer Patients With Postoperative Hypoparathyroidism:A Nationwide Cohort Study in Korea[J]. J Bone Miner Res, 2023, 38(9): 1268-1277. doi:10.1002/jbmr.4871
doi: 10.1002/jbmr.4871 |
15 |
MULITA F, VERRAS G I, DAFNOMILI V D, et al. Thyroidectomy for the Management of Differentiated Thyroid Carcinoma and their Outcome on Early Postoperative Complications: A 6-year Single-Centre Retrospective Study[J].Chirurgia (Bucur), 2022, 117(5): 556-562. doi:10.21614/chirurgia.2736
doi: 10.21614/chirurgia.2736 |
16 |
TEMPERLEY T S, TEMPERLEY H C, O'SULLIVAN N J, et al. Tracheoesophageal fistula development following radiotherapy and tyrosine kinase inhibitors in a patient with advanced follicular thyroid carcinoma: a case-based review[J]. Ir J Med Sci, 2024, 193(3): 1143-1147. doi:10.1007/s11845-023-03559-4
doi: 10.1007/s11845-023-03559-4 |
17 |
TUTTLE R M, AHUJA S, AVRAM A M, et al. Controversies,Consensus,and Collaboration in the Use of(131)ITherapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association[J]. Thyroid, 2019, 29(4): 461-470. doi:10.1089/thy.2018.0597
doi: 10.1089/thy.2018.0597 |
18 |
SHANGGUAN L, ZHANG P, FANG S, et al. Preliminary Study on the Relationship of BRAF Mutations with the Outcome of theFirst(131)IRadiotherapy and Malignant Biological Characteristics in Papillary Thyroid Carcinoma[J]. Int J Gen Med, 2021, 14: 8981-8989. doi:10.2147/ijgm.s337311
doi: 10.2147/ijgm.s337311 |
19 |
CHEN M, ZHANG K Q, XU Y F, et al. Shear wave elastography and contrast-enhanced ultrasonography in the diagnosis of thyroid malignant nodules[J]. Mol Clin Oncol, 2016, 5(6): 724-730. doi:10.3892/mco.2016.1053
doi: 10.3892/mco.2016.1053 |
20 |
AVERKIOU M A, BRUCE M F, Powers J E, et al. Imaging Methods for Ultrasound Contrast Agents[J]. Ultrasound Med Biol, 2020, 46(3): 498-517. doi:10.1016/j.ultrasmedbio.2019.11.004
doi: 10.1016/j.ultrasmedbio.2019.11.004 |
21 |
MINE Y, TAKADA E, SUGIMOTO K, et al. Principle of contrast-enhanced ultrasonography[J]. J Med Ultrason (2001), 2024,51(4):691. doi:10.1007/s10396-024-01500-5
doi: 10.1007/s10396-024-01500-5 |
22 |
ZHOU X, ZHOU P, HU Z, et al. Diagnostic Efficiency of Quantitative Contrast-Enhanced Ultrasound Indicators for Discriminating BenignFromMalignant Solid Thyroid Nodules[J]. J Ultrasound Med, 2018, 37(2): 425-437. doi:10.1002/jum.14347
doi: 10.1002/jum.14347 |
23 |
PETRASOVA H, SLAISOVA R, ROHAN T, et al. Contrast-Enhanced Ultrasonography for Differential Diagnosis of Benign and Malignant Thyroid Lesions: Single-Institutional Prospective Study of Qualitative and Quantitative CEUS Characteristics[J]. Contrast Media Mol Imaging, 2022, 2022: 8229445. doi:10.1155/2022/8229445
doi: 10.1155/2022/8229445 |
24 |
ZHAO H, LIU X, LEI B, et al. Diagnostic performance of thyroid imaging reporting and data system (TI-RADS) alone and in combination with contrast-enhanced ultrasonography for the characterization of thyroid nodules[J]. Clin Hemorheol Microcirc, 2019, 72(1): 95-106. doi:10.3233/ch-180457
doi: 10.3233/ch-180457 |
25 | 杨霞, 付敏, 王洋.甲状腺肿瘤微血管密度与超声表现的相关性[J]. 实用癌症杂志, 2019, 34(7): 1147-1149. |
26 |
TRIMBOLI P, CASTELLANA M, VIRILI C, et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: A systematic review and meta-analysis using histological standard of reference[J].RadiolMed, 2020, 125(4): 406-415. doi:10.1007/s11547-019-01129-2
doi: 10.1007/s11547-019-01129-2 |
27 |
LIN Y, WU Y. Trends in incidence and overdiagnosis of thyroid cancer in China, Japan, and South Korea[J]. Cancer Sci, 2023, 114(10): 4052-4062. doi:10.1111/cas.15909
doi: 10.1111/cas.15909 |
28 |
WANG D, XING C, LIANG Y, et al. Ultrasound Imaging of Tumor Vascular CD93 with MMRN2 Modified Microbubbles for Immune Microenvironment Prediction[J]. Adv Mater, 2024, 36(18): e2310421. doi:10.1002/adma.202470134
doi: 10.1002/adma.202470134 |
29 |
DIAKOVAG B, WANG M, UNNIKRISHNAN S, et al. Preparation and Characterization of Targeted Microbubbles[J]. J Vis Exp, 2021(175). doi:10.3791/62370
doi: 10.3791/62370 |
30 |
MA J, WANG Y, XI X, et al. Contrast-enhanced ultrasound combined targeted microbubbles for diagnosis of highly aggressive papillary thyroid carcinoma[J]. Front Endocrinol (Lausanne), 2023, 14: 1052862. doi:10.3389/fendo.2023.1052862
doi: 10.3389/fendo.2023.1052862 |
31 |
XIE F, YAN L, LI Y M, et al. Targeting Diagnosis of High-Risk Papillary Thyroid Carcinoma Using Ultrasound Contrast Agent With the BRAF(V600E) Mutation: An Experimental Study[J]. J Ultrasound Med, 2022, 41(11): 2789-2802. doi:10.1002/jum.15967
doi: 10.1002/jum.15967 |
32 |
HE J, LIU Z, ZHU X, et al. Ultrasonic Microbubble Cavitation Enhanced Tissue Permeability and Drug Diffusion in Solid Tumor Therapy[J]. Pharmaceutics, 2022, 14(8):1642. doi:10.3390/pharmaceutics14081642
doi: 10.3390/pharmaceutics14081642 |
33 |
LIN Y C, CHEN H C, CHEN H K, et al. Ultrastructural Changes AssociatedWiththe Enhanced Permeability of the Round Window Membrane Mediated by Ultrasound Microbubbles[J]. Front Pharmacol, 2019, 10: 1580. doi:10.3389/fphar.2019.01580
doi: 10.3389/fphar.2019.01580 |
34 |
TZU-YIN W, WILSON K E, MACHTALER S, et al. Ultrasound and microbubble guided drug delivery: Mechanistic understanding and clinical implications[J]. Curr Pharm Biotechnol, 2013, 14(8): 743-752. doi:10.2174/1389201014666131226114611
doi: 10.2174/1389201014666131226114611 |
35 |
YANG Y U, BAI W, CHEN Y, et al. Optimization of low-frequency low-intensity ultrasound-mediated microvessel disruption on prostate cancer xenografts in nude mice using an orthogonal experimental design[J]. Oncol Lett, 2015, 10(5): 2999-3007. doi:10.3892/ol.2015.3716
doi: 10.3892/ol.2015.3716 |
36 |
LEI W, CHANG S, TIAN F, et al. Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation[J]. Ultrason Sonochem, 2024, 109: 107005. doi:10.1016/j.ultsonch.2024.107005
doi: 10.1016/j.ultsonch.2024.107005 |
37 |
刘婷婷, 罗德钦, 邓铖, 等. 受体酪氨酸激酶样孤儿素受体2在甲状腺乳头状癌中的表达及临床意义[J]. 实用医学杂志, 2023, 39(8): 985-990. doi:10.3969/j.issn.1006-5725.2023.08.012
doi: 10.3969/j.issn.1006-5725.2023.08.012 |
38 |
MARANO F, FRAIRIA R, RINELLA L, et al.Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: Preclinical study in a xenograft mouse model[J]. Endocr Relat Cancer, 2017, 24(6): 275-286. doi:10.1530/erc-17-0045
doi: 10.1530/erc-17-0045 |
39 |
彭云, 温美玲, 吕云霞, 等. LncRNA DSCAM-AS1调节miR-150-5p/BRAF轴对甲状腺癌细胞恶性生物学行为的影响[J]. 实用医学杂志, 2023, 39(23): 3043-3050. doi:10.3969/j.issn.1006-5725.2023.23.004
doi: 10.3969/j.issn.1006-5725.2023.23.004 |
40 |
ZHU Y, ARKIN G, ZENG W, et al. Ultrasound image-guided cancer gene therapy using iRGD dual-targeted magnetic cationic microbubbles[J]. Biomed Pharmacother, 2024, 172: 116221. doi:10.1016/j.biopha.2024.116221
doi: 10.1016/j.biopha.2024.116221 |
41 |
CHEN X, ZHANG X, QIAN Y, et al. Ultrasound-targeted microbubble destruction-mediated miR-144-5p overexpression enhances the anti-tumor effect of paclitaxel on thyroid carcinoma by targeting STON2[J]. Cell Cycle, 2022, 21(10): 1058-1076. doi:10.1080/15384101.2022.2040778
doi: 10.1080/15384101.2022.2040778 |
42 |
ZHANG Y, QIU N, ZHANG Y, et al. Oxygen-carrying nanoparticle-based chemo-sonodynamic therapy for tumor suppression and autoimmunity activation[J]. Biomater Sci, 2021, 9(11): 3989-4004. doi:10.1039/d1bm00198a
doi: 10.1039/d1bm00198a |
43 |
XIANG Y, BERNARDS N, HOANG B, et al. Perfluorocarbon nanodroplets can reoxygenate hypoxic tumors in vivo without carbogen breathing[J]. Nanotheranostics, 2019, 3(2): 135-144. doi:10.7150/ntno.29908
doi: 10.7150/ntno.29908 |
44 |
WANG Q, SUI G, WU X, et al. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics[J]. Acta Biomater, 2020, 102: 367-383. doi:10.1016/j.actbio.2019.11.043
doi: 10.1016/j.actbio.2019.11.043 |
45 |
GUAN S, TENG D, WANG H, et al. Multifunctional Phase-Transition Nanoparticles for Effective Targeted Sonodynamic-Gene Therapy Against Thyroid Papillary Carcinoma[J]. Int J Nanomedicine, 2023, 18: 2275-2293. doi:10.2147/ijn.s394504
doi: 10.2147/ijn.s394504 |
[1] | Keyi LIU,Guangpeng LIANG,Fang CHAI,Chang. LIU. Factors influencing number of lymph nodes obtained by prophylactic central lymph node dissection for papillary thyroid cancer [J]. The Journal of Practical Medicine, 2024, 40(4): 508-514. |
[2] | Feng ZHU,Qing LI,Xi CHEN,Yang HE,Lei. PENG. Application of FNA combined with next⁃generation sequencing in the diagnosis and treatment of thyroid nodules [J]. The Journal of Practical Medicine, 2024, 40(17): 2471-2476. |
[3] | YU Jiangtao , WANG Shijie, ZHANG Gaofei, DUAN Xinxin, HUO Qingfeng, ZHENG Shouhua, LIU Peiyu. . Predictive value of serum thyroglobulin and TSH for recurrence of differentiated thyroid cancer after total thyroidectomy without remnant ablation [J]. The Journal of Practical Medicine, 2023, 39(9): 1159-1163. |
[4] | Yun PENG,Meiling WEN,Yunxia LV,Wanzhi CHEN,Chun HE,Jianping YU,Zhenluo. DING. Impact of LncRNA DSCAM⁃AS1 on the malignant biological behaviors of thyroid cancer cells by regulating the miR⁃150⁃5p/BRAF axis [J]. The Journal of Practical Medicine, 2023, 39(23): 3043-3050. |
[5] | LI Li, WANG Jianjun, CAO Junyu, LIU Jia, LAI Minghua, ZHANG Jie, GUO Yongqin, SUN Jianwei.. Effect of radical laparoscopic thyroidectomy via axillary approach vs. transthoracic approach [J]. The Journal of Practical Medicine, 2023, 39(13): 1669-1674. |
[6] |
LIAO Shuting, YU Xiangrong. .
Application of spectral CT and artificial intelligence in the diagnosis of thyroid cancer [J]. The Journal of Practical Medicine, 2022, 38(2): 129-1133. |
[7] |
KAN Zhiwen, HUANG Zijie, CUI Yayun, QIAN Liting.
Analysis of the relationship between the detection of plasma cfDNA methylation by electrochemical method and the diagnosis related clinical features of thyroid cancer [J]. The Journal of Practical Medicine, 2021, 37(6): 792-796. |
[8] |
LI Wenqiang, LIU Huiying, REN Weidong..
Regulation effect of miR⁃653 on biological behavior of thyroid cancer cells by interference with hsa_circ_ 0023642 [J]. The Journal of Practical Medicine, 2021, 37(21): 2727-2732. |
[9] |
LUO Lingling, XIA Junyong, ZHANG Ran, BIAN Qianyu, YAO Xiaobo..
Influencing factors of indeterminate response to 131I treatment in patients with differentiated thyroid cancer [J]. The Journal of Practical Medicine, 2021, 37(20): 2656-2659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||