The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (2): 294-299.doi: 10.3969/j.issn.1006-5725.2025.02.021
• Reviews • Previous Articles
Xingyu WAN1,Nan LI1,Shuiqing LIU1(),Xi. ZHANG1,2
Received:
2024-10-24
Online:
2025-01-25
Published:
2025-01-26
Contact:
Shuiqing LIU
E-mail:liushuiqing062@tmmu.edu.cn
CLC Number:
Xingyu WAN,Nan LI,Shuiqing LIU,Xi. ZHANG. Research advances of mesenchymal stem cells in the bone marrow microenvironment of acute myeloid leukemia[J]. The Journal of Practical Medicine, 2025, 41(2): 294-299.
Tab.1
Regulation of MSCs extracellular vesicles in AML cells"
研究团队 | EVs来源 | 促癌/抑癌 | 作用机制 | 下游基因或通路 | 对AML的影响 |
---|---|---|---|---|---|
WU等[ | AML患者MSCs | 促癌 | 传递miR?10a | RPRD1A, Wnt/β?catenin | 促进细胞增殖,避免细胞凋亡,降低化疗敏感性 |
JI等[ | AML患者MSCs | 促癌 | 传递miR?26a?5p | GSK3β, Wnt/β?catenin | 促进细胞增殖,促进迁移侵袭 |
CHENG等[ | 正常MSCs细胞株 | 抑癌 | 传递miR?23b?5p | TRIM14, PI3K/AKT | 抑制细胞增殖,诱导细胞凋亡 |
ZHANG等[ | 正常MSCs细胞株 | 抑癌 | 传递miR?222?3p | IRF2, INPP4B | 抑制细胞增殖,诱导细胞凋亡 |
XU等[ | 正常MSCs细胞株 | 抑癌 | 传递hsa?miR?124?5p | SMC4 | 抑制细胞增殖,阻断细胞周期,诱导细胞凋亡 |
SUN等[ | 正常脐带血MSCs | 抑癌 | 传递NE | p38 MAPK?STAT3 | 阻断细胞周期,诱导细胞凋亡,促进细胞分化 |
1 |
WANG Y, CHANG Y J, CHEN J, et al. Consensus on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation in China: 2024 update[J]. Cancer Lett, 2024, 605: 217264. doi:10.1016/j.canlet.2024.217264
doi: 10.1016/j.canlet.2024.217264 |
2 |
WANG X, HUANG R, WU W, et al. Amplifying STING activation by bioinspired nanomedicine for targeted chemo- and immunotherapy of acute myeloid leukemia[J]. Acta Biomaterialia, 2023, 157: 381-394. doi:10.1016/j.actbio.2022.11.007
doi: 10.1016/j.actbio.2022.11.007 |
3 |
KANDARAKOV O, BELYAVSKY A, SEMENOVA E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells[J]. Int J Mol Sci, 2022, 23(8): 4462. doi:10.3390/ijms23084462
doi: 10.3390/ijms23084462 |
4 |
WANG Y, FANG J, LIU B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell Stem Cell, 2022, 29(11): 1515-1530. doi:10.1016/j.stem.2022.10.001
doi: 10.1016/j.stem.2022.10.001 |
5 |
FAN S, SUN X, SU C, et al. Macrophages-bone marrow mesenchymal stem cells crosstalk in bone healing[J]. Front Cell Dev Biol, 2023, 11: 1193765. doi:10.3389/fcell.2023.1193765
doi: 10.3389/fcell.2023.1193765 |
6 |
FORTE D, GARCÍA-FERNÁNDEZ M, SÁNCHEZ-AGUILERA A, et al. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy[J]. Cell Metab, 2020, 32(5): 829-843.e829. doi:10.1016/j.cmet.2020.09.001
doi: 10.1016/j.cmet.2020.09.001 |
7 |
MOSCHOI R, IMBERT V, NEBOUT M, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy[J]. Blood, 2016, 128(2): 253-264. doi:10.1182/blood-2015-07-655860
doi: 10.1182/blood-2015-07-655860 |
8 |
MARLEIN C R, ZAITSEVA L, PIDDOCK R E, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts[J]. Blood, 2017, 130(14): 1649-1660. doi:10.1182/blood-2017-03-772939
doi: 10.1182/blood-2017-03-772939 |
9 | SAITO K, ZHANG Q, YANG H, et al. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition[J]. Blood Adv, 2021, 5(20): 4233-4255. |
10 |
YOU R, WANG B, CHEN P, et al. Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells[J]. Cancer Lett, 2022, 532: 215582. doi:10.1016/j.canlet.2022.215582
doi: 10.1016/j.canlet.2022.215582 |
11 |
MISTRY J J, MOORE J A, KUMAR P, et al. Daratumumab inhibits acute myeloid leukaemia metabolic capacity by blocking mitochondrial transfer from mesenchymal stromal cells[J]. Haematologica, 2021, 106(2): 589-592. doi:10.3324/haematol.2019.242974
doi: 10.3324/haematol.2019.242974 |
12 |
MENDES M, MONTEIRO A C, NETO E, et al. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression[J]. Int J Mol Sci, 2024, 25(8): 4430. doi:10.3390/ijms25084430
doi: 10.3390/ijms25084430 |
13 |
WU J, ZHANG Y, LI X, et al. Exosomes from bone marrow mesenchymal stem cells decrease chemosensitivity of acute myeloid leukemia cells via delivering miR-10a[J]. Biochem Biophys Res Commun, 2022, 622: 149-156. doi:10.1016/j.bbrc.2022.07.017
doi: 10.1016/j.bbrc.2022.07.017 |
14 |
JI D, HE Y, LU W, et al. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion[J]. Hum Cell, 2021, 34(3): 965-976. doi:10.1007/s13577-021-00501-7
doi: 10.1007/s13577-021-00501-7 |
15 |
CHENG H, DING J, TANG G, et al. Human mesenchymal stem cells derived exosomes inhibit the growth of acute myeloid leukemia cells via regulating miR-23b-5p/TRIM14 pathway[J]. Mol Med, 2021, 27(1): 128. doi:10.1186/s10020-021-00393-1
doi: 10.1186/s10020-021-00393-1 |
16 |
ZHANG F, LU Y, WANG M, et al. Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B[J]. Mol Cell Probes, 2020, 51: 101513. doi:10.1016/j.mcp.2020.101513
doi: 10.1016/j.mcp.2020.101513 |
17 |
XU Y C, LIN Y S, ZHANG L, et al. MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis[J]. Chin Med J (Engl), 2020, 133(23): 2829-2839. doi:10.1097/cm9.0000000000001138
doi: 10.1097/cm9.0000000000001138 |
18 |
SUN L, YANG N, CHEN B, et al. A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy[J]. Acta Pharm Sin B, 2023, 13(7): 3027-3042. doi:10.1016/j.apsb.2023.05.007
doi: 10.1016/j.apsb.2023.05.007 |
19 |
SHAFAT M S, OELLERICH T, MOHR S, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment[J]. Blood, 2017, 129(10): 1320-1332. doi:10.1182/blood-2016-08-734798
doi: 10.1182/blood-2016-08-734798 |
20 |
YE H, ADANE B, KHAN N, et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche[J]. Cell Stem Cell, 2016, 19(1): 23-37. doi:10.1016/j.stem.2016.06.001
doi: 10.1016/j.stem.2016.06.001 |
21 |
YANG S, LU W, ZHAO C, et al. Leukemia cells remodel marrow adipocytes via TRPV4-dependent lipolysis[J]. Haematologica, 2020, 105(11): 2572-2583. doi:10.3324/haematol.2019.225763
doi: 10.3324/haematol.2019.225763 |
22 |
LIAO X, CAI D, LIU J, et al. Deletion of Mettl3 in mesenchymal stem cells promotes acute myeloid leukemia resistance to chemotherapy[J]. Cell Death Dis, 2023, 14(12): 796. doi:10.1038/s41419-023-06325-7
doi: 10.1038/s41419-023-06325-7 |
23 |
AZADNIV M, MYERS J R, MCMURRAY H R, et al. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support[J]. Leukemia, 2020, 34(2): 391-403. doi:10.1038/s41375-019-0568-8
doi: 10.1038/s41375-019-0568-8 |
24 |
ÅBACKA H, MASONI S, POLI G, et al. SMS121, a new inhibitor of CD36, impairs fatty acid uptake and viability of acute myeloid leukemia[J]. Sci Rep, 2024, 14(1): 9104. doi:10.1038/s41598-024-58689-1
doi: 10.1038/s41598-024-58689-1 |
25 |
DE FREITAS F A, LEVY D, REICHERT C O, et al. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages[J]. Int J Mol Sci, 2024, 25(9): 4748. doi:10.3390/ijms25094748
doi: 10.3390/ijms25094748 |
26 |
LU J, DONG Q, ZHANG S, et al. Acute myeloid leukemia (AML)-derived mesenchymal stem cells induce chemoresistance and epithelial-mesenchymal transition-like program in AML through IL-6/JAK2/STAT3 signaling[J]. Cancer Sci, 2023, 114(8): 3287-3300. doi:10.1111/cas.15855
doi: 10.1111/cas.15855 |
27 |
ZHANG Y, GUO H, ZHANG Z, et al. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia[J]. Exp Cell Res, 2022, 415(1): 113112. doi:10.1016/j.yexcr.2022.113112
doi: 10.1016/j.yexcr.2022.113112 |
28 |
HOU D, WANG B, YOU R, et al. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis[J]. Ann Transl Med, 2020, 8(21): 1346. doi:10.21037/atm-20-3191
doi: 10.21037/atm-20-3191 |
29 |
ANDERSON N R, SHETH V, LI H, et al. Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling[J]. Leukemia, 2023, 37(3): 560-570. doi:10.1038/s41375-022-01798-5
doi: 10.1038/s41375-022-01798-5 |
30 |
VIÑADO A C, CALVO I A, CENZANO I, et al. The bone marrow niche regulates redox and energy balance in MLL: AF9 leukemia stem cells[J]. Leukemia, 2022, 36(8): 1969-1979. doi:10.1038/s41375-022-01601-5
doi: 10.1038/s41375-022-01601-5 |
31 |
YEHUDAI-RESHEFF S, ATTIAS-TURGEMAN S, SABBAH R, et al. Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells[J]. Int J Cancer, 2019, 144(9): 2279-2289. doi:10.1002/ijc.32063
doi: 10.1002/ijc.32063 |
32 |
MODAK R V, DE OLIVEIRA REBOLA K G, MCCLATCHY J, et al. Targeting CCL2/CCR2 Signaling Overcomes MEK Inhibitor Resistance in Acute Myeloid Leukemia[J]. Clin Cancer Res, 2024, 30(10): 2245-2259. doi:10.1158/1078-0432.ccr-23-2654
doi: 10.1158/1078-0432.ccr-23-2654 |
33 |
AASEBØ E, BRENNER A K, HERNANDEZ-VALLADARES M, et al. Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells[J]. Diseases, 2021, 9(4): 74. doi:10.3390/diseases9040074
doi: 10.3390/diseases9040074 |
34 |
LI H, WANG Y, YANG F, et al. Clonal MDS/AML cells with enhanced TWIST1 expression reprogram the differentiation of bone marrow MSCs[J]. Redox Biol, 2023, 67: 102900. doi:10.1016/j.redox.2023.102900
doi: 10.1016/j.redox.2023.102900 |
35 |
KARGAR-SICHANI Y, MOHAMMADI M H, AMIRI V, et al. Effect of Acute Myeloid Leukemia-derived Extracellular Vesicles on Bone Marrow Mesenchymal Stromal Cells: Expression of Poor Prognosis Genes[J]. Arch Med Res, 2023, 54(2): 95-104. doi:10.1016/j.arcmed.2022.12.008
doi: 10.1016/j.arcmed.2022.12.008 |
36 |
ZHANG L, ZHAO Q, CANG H, et al. Acute Myeloid Leukemia Cells Educate Mesenchymal Stromal Cells toward an Adipogenic Differentiation Propensity with Leukemia Promotion Capabilities[J]. Adv Sci (Weinh), 2022, 9(16): 2105811. doi:10.1002/advs.202270101
doi: 10.1002/advs.202270101 |
37 |
WACLAWICZEK A, HAMILTON A, ROUAULT-PIERRE K, et al. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia[J]. J Clin Invest, 2020, 130(6): 3038-3050. doi:10.1172/jci133187
doi: 10.1172/jci133187 |
38 |
SCHELKER R C, KRATZER A, MÜLLER G, et al. Stanniocalcin 1 is overexpressed in multipotent mesenchymal stromal cells from acute myeloid leukemia patients[J]. Hematology, 2021, 26(1): 565-576. doi:10.1080/16078454.2021.1962048
doi: 10.1080/16078454.2021.1962048 |
39 |
CHANDRAN P, LE Y, LI Y, et al. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors[J]. Leuk Res, 2015, 39(4): 486-493. doi:10.1016/j.leukres.2015.01.013
doi: 10.1016/j.leukres.2015.01.013 |
40 |
HORIGUCHI H, KOBUNE M, KIKUCHI S, et al. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms[J]. Haematologica, 2016, 101(4): 437-447. doi:10.3324/haematol.2015.134932
doi: 10.3324/haematol.2015.134932 |
41 |
LAMBLE A J, LIND E F. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity[J]. Front Oncol, 2018, 8: 213. doi:10.3389/fonc.2018.00213
doi: 10.3389/fonc.2018.00213 |
42 |
WU L, LIN Q, MA Z, et al. Mesenchymal PGD(2) activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs[J]. Leukemia, 2020, 34(11): 3028-3041. doi:10.1038/s41375-020-0843-8
doi: 10.1038/s41375-020-0843-8 |
43 |
MANSOUR I, ZAYED R A, SAID F, et al. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia[J]. Hematology, 2016, 21(8): 447-453. doi:10.1080/10245332.2015.1106814
doi: 10.1080/10245332.2015.1106814 |
44 |
CORRADI G, BASSANI B, SIMONETTI G, et al. Release of IFNγ by Acute Myeloid Leukemia Cells Remodels Bone Marrow Immune Microenvironment by Inducing Regulatory T Cells[J]. Clin Cancer Res, 2022, 28(14): 3141-3155. doi:10.1158/1078-0432.ccr-21-3594
doi: 10.1158/1078-0432.ccr-21-3594 |
45 |
FERRELL P B, KORDASTI S. Hostile Takeover: Tregs Expand in IFNγ-Rich AML Microenvironment[J]. Clin Cancer Res, 2022, 28(14): 2986-2988. doi:10.1158/1078-0432.ccr-22-1030
doi: 10.1158/1078-0432.ccr-22-1030 |
46 | BORELLA G, DA ROS A, BORILE G, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia[J]. Blood, 2021, 138(7): 557-570. |
47 |
侯勇哲, 张琴, 赵霄晨, 等. 间充质干细胞来源的胞外囊泡在急性肺损伤治疗中的研究进展[J]. 实用医学杂志, 2023, 39(3): 390-394. doi:10.3969/j.issn.1006-5725.2023.03.023
doi: 10.3969/j.issn.1006-5725.2023.03.023 |
48 |
YANG A, WANG X, JIN L,et al. Human umbilical cord mesenchymal stem cell exosomes deliver potent oncolytic reovirus to acute myeloid leukemia cells[J]. Virology, 2024, 598: 110171. doi:10.1016/j.virol.2024.110171
doi: 10.1016/j.virol.2024.110171 |
49 |
WEN J, CHEN Y, LIAO C, et al. Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells[J]. Cancer Lett, 2023, 575: 216407. doi:10.1016/j.canlet.2023.216407
doi: 10.1016/j.canlet.2023.216407 |
50 | 万星煜, 郭焕平, 黄瑞昊, 等. ADAR1介导的RNA编辑在血液肿瘤中的调控作用[J]. 生物化学与生物物理进展, 2024, 51(2): 300-308. |
51 | 游静茹, 杨璐, 崔小丽, 等. 急性髓系白血病中表观遗传学异常的研究进展[J]. 实用医学杂志, 2023, 39(10): 1316-1319. |
[1] | Huiling CAO,Jie ZHANG,Xiaofei ZHU,Shining QIAN,Yunfeng. CHEN. Study on the mechanism of tetramethylpyrazine pretreatment umbilical cord mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. The Journal of Practical Medicine, 2025, 41(2): 178-185. |
[2] | Fazhu FEI,Jiajun LU,Shuai ZHANG,Hao LI,Bin REN. Clinical application progress of immunization and targeted therapy for Hepatocellular Carcinoma in special populations [J]. The Journal of Practical Medicine, 2024, 40(6): 738-742. |
[3] | Qing LUO,Jinjin HUANG,Tingting REN,Ruihua ZHOU,Donghua XU,Zhenhua WANG,Guoying WANG. The effect of umbilical cord stem cell exosomes on the proliferation of dermal papilla cells [J]. The Journal of Practical Medicine, 2024, 40(20): 2828-2834. |
[4] | Sishi XU,Peipei. YE. Clinical research progress of BTK inhibitors in the treatment of mantle cell lymphoma [J]. The Journal of Practical Medicine, 2024, 40(17): 2363-2368. |
[5] | Yuting LI,Qilu YAN,Qibin. SONG. Molecular basis of variability in EGFR⁃targeted therapy response in non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2024, 40(15): 2166-2171. |
[6] | Jingwen AN,Junyun FENG,Lei RAO,Dewu LIU. Research progress on relationship between cellular senescence and scar fibrosis [J]. The Journal of Practical Medicine, 2024, 40(12): 1749-1754. |
[7] |
CHEN Xia, WU Xinxin, LIU Xingyou, CHEN Xinhao, HUANG Yinxia, XIAO Zhiyuan, HE Jigang. .
Overexpressed NKx2.5 genes in mesenchymal stem cells improve myocardial function in patients with myo⁃ cardial infarction via enhancing SDF⁃1/CXCR4⁃axis homing [J]. The Journal of Practical Medicine, 2023, 39(6): 660-666. |
[8] |
HOU Yongzhe, ZHANG Qin, ZHAO Xiaochen, HE Miao, YU Lingling, BAI Hai, WU Tao..
Research progress of extracellular vesicles derived from mesenchymal stem cells in treatment of acute lung injury [J]. The Journal of Practical Medicine, 2023, 39(3): 390-394. |
[9] | Dan XIE,Shi. OUYANG. Effect of Yinchenhao Decoction combined with exosomes derived from umbilical cord mesenchymal stem cells on acute liver failure and hepatocyte pyroptosis [J]. The Journal of Practical Medicine, 2023, 39(23): 3034-3042. |
[10] | Ruijuan WANG,Chao LI,Lijuan DUAN,Miao SHANG,Ruyu. YANG. Impacts of chlorprothixene on autophagy and apoptosis in human acute myeloid leukemia cells by regulating Akt/mTOR pathway [J]. The Journal of Practical Medicine, 2023, 39(20): 2584-2590. |
[11] | YOU Jingru, YANG Lu, CUI Xiaoli, BAI Hai. . Advances in epigenetic abnormalities in acute myeloid leukemia [J]. The Journal of Practical Medicine, 2023, 39(10): 1316-1319. |
[12] |
WANG Jing, XIANG Jian, HU Shufang, ZHU Yankun, ZHONG Yuchai..
Clinical value of MagT1 level in peripheral blood T lymphocytes in patients with acute myeloid leukemia [J]. The Journal of Practical Medicine, 2022, 38(8): 991-996. |
[13] |
ZHU Boheng, ZHANG Jinglin, WANG Hong..
Research progress of negative pressure wound therapy combined with adipose⁃derived mesenchymal stem cells in treatmentofchronic wound [J]. The Journal of Practical Medicine, 2022, 38(8): 1037-1041. |
[14] |
ZHOU Yongxin, ZHAI Wenjing, JIA Zhiqiang, ZHAO Xiaoguang, WANG Lei, FANG Liping, ZHAI Shafei, HUANG Tao. .
Exosomes derived from miR⁃210⁃5p⁃modified mesenchymal stem cells promote recovery after spinal cord injury in rats [J]. The Journal of Practical Medicine, 2022, 38(6): 711-714. |
[15] |
CAO Huiling, WANG Xiaorong, ZHU Xiaofei, ZHANG Jie, QIAN Shining. .
Effect and mechanism of Tetramethylpyrazine on the migration of umbilical cord mesenchymal stem cell in the treatment of ischemic stroke [J]. The Journal of Practical Medicine, 2022, 38(6): 726-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||