The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (12): 1767-1774.doi: 10.3969/j.issn.1006-5725.2025.12.001
• Symposiums •
Yunyun WANG1,Haijun ZHANG2,3,Li ZHANG2,Xiu WANG1,Jin CHANG3()
Received:
2025-02-27
Online:
2025-06-25
Published:
2025-07-02
Contact:
Jin CHANG
E-mail:cjls818717@sina.com
CLC Number:
Yunyun WANG,Haijun ZHANG,Li ZHANG,Xiu WANG,Jin CHANG. Research progress on the engineering construction of biomimetic auricle reconstruction prosthesis[J]. The Journal of Practical Medicine, 2025, 41(12): 1767-1774.
Tab. 1
Analysis table of the types of auricle scaffolds and their material characteristics"
耳支架 | 优点 | 缺点 |
---|---|---|
自体软骨 | 无排斥反应,安全性高 | 弹性差、手术时间长[10-11]、供区继发性损伤、年龄限制等[ |
硅橡胶 | 理化性能稳定,弹性好 | 疏水性、透光性、支架外漏 |
高密度聚乙烯 | 易于雕刻,多孔 | 疏水性、支架暴露、感染率高 |
聚乳酸 | 生物降解、生物相容性、印刷效果 | 降解速率不稳定、酸性降解产物在组织的炎性反应 |
组织工程 | 个性化、低免疫原性 | 细胞分化不可控,技术成熟度 |
钛 | 高强度、稳定性、耐腐蚀,长期稳定 | 价格高,加工难度大 |
耳赝复体 | 个性化定制,个体损伤小,无年龄限制 | 免疫原性、维护费用高,变色 |
Tab. 3
Composition and properties of modified polylactic acid"
支架 | 改性方法 | 物理性能 | 移植效果 |
---|---|---|---|
F-PLA | 氟涂层镁合金为增强芯[ | 最大载荷和刚度显著提高。 | 镁的碱性产物中和了PLA的酸性降解产物,炎症反应降低。 |
Ti-PLA | 钛气相金属[ | 拉伸强度提高了150%,生物降解性延缓。 | 促炎因子减少,假体支撑性能稳定。 |
TNT-PLA | 二氧化钛纳米管(TNT)增强芯,多孔PLA打印表面[ | 孔径为60 μm。抗拉强度值为248%,物理强度提高。 | ALP表达增加30% ~ 50%,骨组织粘附面积增加。 |
Ta-PLA | 采用静电纺丝和直流溅射[ | 断裂伸长率由(159.5±29.5)%提高到(218.6±19.1)%。涂层在拉伸过程中未发生分层。 | Ta涂层增强了成骨细胞的粘附、增殖和分化以及细胞骨架的延长。Ta-PLA组的新骨覆盖率是裸PLA组的2倍。 |
1 | CHEN X, MA J, ZHANG T. Genetics and Epigenetics in the Genesis and Development of Microtia[J]. J Craniofac Surg, 2024, 35(3): e261-e266. |
2 |
ZEBOLSKY A L, PATEL N, HEATON C M, et al. Patient-reported aesthetic and psychosocial outcomes after microvascular reconstruction for head and neck cancer[J]. JAMA Otolaryngol Head Neck Surg, 2021, 147(12): 1035-1044. doi:10.1001/jamaoto.2021.1563
doi: 10.1001/jamaoto.2021.1563 |
3 |
STALLINGS E B, ISENBURG J L, MAI C T, et al. Population‐based birth defects data in the United States, 2011-2015: A focus on eye and ear defects[J]. Birth Defects Res, 2018, 110(19): 1478-1486. doi:10.1002/bdr2.1413
doi: 10.1002/bdr2.1413 |
4 |
DENG K, DAI L I, YI L, et al. Epidemiologic characteristics and time trend in the prevalence of anotia and microtia in China[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(2): 88-94. doi:10.1002/bdra.23462
doi: 10.1002/bdra.23462 |
5 |
JOVIC T H, GIBSON J A G, GRIFFITHS R, et al. Microtia: A data linkage study of epidemiology and implications for service delivery[J]. Front Pediatr, 2021, 9: 630036. doi:10.3389/fped.2021.630036
doi: 10.3389/fped.2021.630036 |
6 |
AL-SULAIMANI A K, AL-KHABORI M S, HARIDI K M, et al. Prevalence and characteristics of microtia in Oman: 37 Years analysis[J]. J Plast Reconstr Surg, 2023, 76: 292-294. doi:10.1016/j.bjps.2022.10.047
doi: 10.1016/j.bjps.2022.10.047 |
7 |
CHARIPOVA K, ROGERS A, BARRA C, et al. Evolution of anomaly-specific techniques in infant ear molding: A 10-year retrospective study[J].J Plast Reconstr Surg, 2022, 150(2): 394-404. doi:10.1097/prs.0000000000009335
doi: 10.1097/prs.0000000000009335 |
8 |
STONE R N, REECK J C, OXFORD J T. Advances in cartilage tissue engineering using bioinks with decellularized cartilage and three-dimensional printing[J]. Int J Mol Med Sci, 2023, 24(6): 5526. doi:10.3390/ijms24065526
doi: 10.3390/ijms24065526 |
9 |
XIE Z T, ZENG J, KANG D H, et al. 3D printing of collagen scaffold with enhanced resolution in a citrate‐modulated gellan gum microgel bath[J]. Adv Healthc Mater, 2023, 12(27): 2301090. doi:10.1002/adhm.202301090
doi: 10.1002/adhm.202301090 |
10 |
BANDA C H, NARUSHIMA M, MITSUI K, et al. Posterior auricular artery free flap reconstruction of the retroauricular sulcus in microtia repair[J]. J Plast Reconstr Aesthet Surg, 2021, 74(9): 2349-2357. doi:10.1016/j.bjps.2020.12.047
doi: 10.1016/j.bjps.2020.12.047 |
11 | 卢子敬. 小耳畸形供区肋软骨生长的定量分析及新型支架在耳软骨组织再生的实验研究[D]. 广州:南方医科大学,2024. |
12 |
MILLER J E, FARLOW J L, KNECHT E M, et al. Ultrasonographic assessment of costochondral cartilage for microtia reconstruction[J]. Laryngoscope, 2019, 129(5):1078-1080. doi:10.1002/lary.27390
doi: 10.1002/lary.27390 |
13 | 邱琳,张再兴. 耳后穿支皮瓣修复耳廓及外耳道肿瘤术后缺损的临床效果[J]. 实用医学杂志,2021,37(1):125-128. |
14 |
LI D, ZHANG R, XU Z, et al. Ear reconstruction: Empirical data of 406 cases of carving the convex structures of the framework[J]. Laryngoscope, 2023, 133(3): 569-575. doi:10.1002/lary.30319
doi: 10.1002/lary.30319 |
15 |
SALAKHOV I I, SHAIDULLIN N M, CHALYKH A E, et al. Low-temperature mechanical properties of high-density and low-density polyethylene and their blends[J]. Polymers, 2021, 13(11): 1821. doi:10.3390/polym13111821
doi: 10.3390/polym13111821 |
16 |
KOZUSKO S D, KONOFAOS P, WALLACE R D. The history of alloplastic ear reconstruction for microtia[J]. Ann Plast Surg, 2020, 85(1): 89-92. doi:10.1097/sap.0000000000002213
doi: 10.1097/sap.0000000000002213 |
17 |
WANG Y, ZHANG J, LIANG W, et al. Ear reconstruction with the combination of expanded skin flap and Medpor framework: 20 years of experience in a single center[J]. Plast Reconstr Surg, 2021, 148(4): 850-860. doi:10.1097/prs.0000000000008325
doi: 10.1097/prs.0000000000008325 |
18 | 陈明智. 不同材料隆鼻术后并发症的Meta分析[D]. 长春:吉林大学,2023. |
19 |
YIN J, ZHONG J, WANG J, et al. 3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction[J]. Mater Today Bio, 2022, 16: 100361. doi:10.1016/j.mtbio.2022.100361
doi: 10.1016/j.mtbio.2022.100361 |
20 |
SENGUPTA P, SURWASE S S, PRASAD B L V. Modification of porous polyethylene scaffolds for cell attachment and proliferation[J]. Int J Nanotechnol Nanomed, 2018, 13(sup1): 87-90. doi:10.2147/ijn.s125000
doi: 10.2147/ijn.s125000 |
21 |
FAGA M G, DURACCIO D, DI MARO M, et al. Electron-Beam-Induced Grafting of Chitosan onto HDPE/ATZ Composites for Biomedical Applications[J]. Polymers, 2021, 13(22): 4016. doi:10.3390/polym13224016
doi: 10.3390/polym13224016 |
22 |
MOURA D, PEREIRA A T, FERREIRA H P, et al. Poly (2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: From soft inert to strong degradable material[J]. Acta Biomater, 2023, 164: 253-268. doi:10.1016/j.actbio.2023.04.031
doi: 10.1016/j.actbio.2023.04.031 |
23 |
SPÄTER T, TOBIAS A L, MENGER M M, et al. Biological coating with platelet-rich plasma and adipose tissue-derived microvascular fragments improves the vascularization, biocompatibility and tissue incorporation of porous polyethylene[J]. Acta Biomater, 2020, 108: 194-206. doi:10.1016/j.actbio.2020.03.018
doi: 10.1016/j.actbio.2020.03.018 |
24 | 魏建国,段东明,井一涵,等. 不同浓度生长因子对人脐静脉内皮细胞增殖影响的实验研究[J]. 实用医学杂志,2021,37(23):2977-2983. |
25 |
OTTO I A, MELCHELS F P W, ZHAO X, et al. Auricular reconstruction using biofabrication-based tissue engineering strategies[J]. Biofabrication, 2015, 7(3): 032001. doi:10.1088/1758-5090/7/3/032001
doi: 10.1088/1758-5090/7/3/032001 |
26 | 王千懿,冉欣悦,张沛灵,等. 软骨脱细胞基质/丝素蛋白活性支架的构建及其软骨组织工程研究[J]. 上海交通大学学报(医学版),2023,43(7):795-803. |
27 |
XU L, URITA A, ONODERA T, et al. Ultrapurified alginate gel containing bone marrow aspirate concentrate enhances cartilage and bone regeneration on osteochondral defects in a rabbit model[J]. Am J Sports Med, 2021, 49(8): 2199-2210. doi:10.1177/03635465211014186
doi: 10.1177/03635465211014186 |
28 |
MURARIU M, DUBOIS P. PLA composites: From production to properties[J]. Adv Drug Deliv Rev, 2016, 107: 17-46. doi:10.1016/j.addr.2016.04.003
doi: 10.1016/j.addr.2016.04.003 |
29 |
ZHANG H Y, JIANG H B, KIM J E, et al. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration[J]. J Mech Behav Biomed Mater, 2020, 112: 104061. doi:10.1016/j.jmbbm.2020.104061
doi: 10.1016/j.jmbbm.2020.104061 |
30 |
PORTAN D V, NTOULIAS C, MANTZOURANIS G, et al. Gradient 3D printed PLA scaffolds on biomedical titanium: Mechanical evaluation and biocompatibility[J]. Polymers, 2021, 13(5): 682. doi:10.3390/polym13050682
doi: 10.3390/polym13050682 |
31 |
HWANG C, PARK S, KANG I G, et al. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration[J]. Mater Sci Eng C, 2020, 115: 111112. doi:10.1016/j.msec.2020.111112
doi: 10.1016/j.msec.2020.111112 |
32 |
MOHAMAD S N K, RAMLI I, ABDULLAH L C, et al. Evaluation on structural properties and performances of graphene oxide incorporated into chitosan/poly-lactic acid composites: Cs/pla versus cs/pla-go[J]. Polymers, 2021, 13(11): 1839. doi:10.3390/polym13111839
doi: 10.3390/polym13111839 |
33 |
LIU Y, ZHANG L, ZHOU G, et al. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology[J]. Biomater, 2010, 31(8): 2176-2183. doi:10.1016/j.biomaterials.2009.11.080
doi: 10.1016/j.biomaterials.2009.11.080 |
34 |
SONG Y, REN M, WU Y, et al. The effect of different surface treatment methods on the physical, chemical and biological performances of a PGA scaffold[J]. RSC Adv, 2019, 9(35): 20174-20184. doi:10.1039/c9ra02100k
doi: 10.1039/c9ra02100k |
35 | 曾今实. 基于细菌纳米纤维素强化甲基丙烯酰化明胶3D生物打印耳软骨的研究[D]. 北京:北京协和医学院,2022. |
36 |
NGUYEN V P, YOO J, LEE J Y, et al. Enhanced mechanical stability and biodegradability of Ti-infiltrated polylactide[J]. ACS Appl Mater Interfaces, 2020, 12(39): 43501-43512. doi:10.1021/acsami.0c13246
doi: 10.1021/acsami.0c13246 |
37 | 林优. 自体耳软骨游离移植后生物学转归的实验研究[D]. 泸州:西南医科大学,2023. |
38 | XUE K, ZHANG X, QI L, et al. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium[J]. Am J Transl Res, 2016, 8(2): 732. |
39 | 马玥,檀诗雨,楚飞洋,等. 基质细胞衍生因子1修饰左旋聚乳酸多孔微球促进软骨细胞增殖和组织形成[J]. 中国组织工程研究,2025,29(22):4653-4662. |
40 |
TROMPET D, MELIS S, CHAGIN A S, et al. Skeletal stem and progenitor cells in bone development and repair[J]. J Bone Miner Res, 2024, 39(6): 633-654. doi:10.1093/jbmr/zjae069
doi: 10.1093/jbmr/zjae069 |
41 | 黄仕道. 脂肪干细胞外泌体miR-34a-5p通过Wnt/β-catenin信号轴调控成骨机制研究[D]. 百色:右江民族医学院,2023. |
42 |
JIA W, HE W, WANG G, et al. Enhancement of lymphangiogenesis by human mesenchymal stem cell sheet[J]. Adv Healthc Mater, 2022, 11(16): 2200464. doi:10.1002/adhm.202200464
doi: 10.1002/adhm.202200464 |
43 |
KOWSARI-ESFAHAN R, JAHANBAKHSH A, SAIDI M S, et al. A microfabricated platform for the study of chondrogenesis under different compressive loads[J]. J Mech Behav Biomed Mater, 2018, 78: 404-413. doi:10.1016/j.jmbbm.2017.12.002
doi: 10.1016/j.jmbbm.2017.12.002 |
44 |
MORRISON R J, NASSER H B, KASHLAN K N, et al. Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering[J]. Laryngoscope, 2018, 128(7): E251-E257. doi:10.1002/lary.27200
doi: 10.1002/lary.27200 |
45 |
DONG X, ASKINAS C, KIM J, et al. Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning[J]. J Immunol Regen Med, 2022, 16(9): 825-835. doi:10.1002/term.3332
doi: 10.1002/term.3332 |
46 |
XIE J, ZHANG D, ZHOU C, et al. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction[J]. Acta Biomater, 2018, 79: 83-95. doi:10.1016/j.actbio.2018.08.018
doi: 10.1016/j.actbio.2018.08.018 |
47 |
YANG L, GE L, VAN RIJN P. Synergistic effect of cell-derived extracellular matrices and topography on osteogenesis of mesenchymal stem cells[J]. ACS Appl Mater Interfaces, 2020, 12(23): 25591-25603. doi:10.1021/acsami.0c05012
doi: 10.1021/acsami.0c05012 |
48 |
GUNGORDU H I, BAO M, VAN HELVERT S, et al. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2019, 13(12): 2279-2290. doi:10.1002/term.2956
doi: 10.1002/term.2956 |
49 |
LEE J, CHOI J W, HONG K D, et al. Injectable polydimethylsiloxane microfiller coated with zwitterionic polymer for enhanced biocompatibility[J]. Colloids Surf B Biointerfaces, 2022, 210: 112223. doi:10.1016/j.colsurfb.2021.112223
doi: 10.1016/j.colsurfb.2021.112223 |
50 |
RING M E. The history of maxillofacial prosthetics[J]. Plast Aesthet Nurs, 1991, 87(1): 174-184. doi:10.1097/00006534-199101000-00031
doi: 10.1097/00006534-199101000-00031 |
51 |
TING T M, AHMAD N S, GOH P, et al. Binaural modelling and spatial auditory cue analysis of 3D-printed ears[J]. Sens, 2021, 21(1): 227. doi:10.3390/s21010227
doi: 10.3390/s21010227 |
52 |
LV J, WANG H, CHENG X, et al. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: A single-arm trial[J]. Lancet, 2024, 403(10441): 2317-2325. doi:10.1016/s0140-6736(23)02874-x
doi: 10.1016/s0140-6736(23)02874-x |
[1] | WANG Qi, WANG Xinzhu, JIANG Zengyu, ZHOU Jingli, HE Sheng. . Long⁃term improvement of cardiac function after myocardial infarction with infectable Polypyrrole⁃Chito⁃ san [J]. The Journal of Practical Medicine, 2023, 39(13): 1606-1613. |
[2] |
PAN Xinyao, LI Ting, WU Yaobin, LI Yanbing, HUANG Wenhua. .
Advances in clinical applications and research of bio⁃3D printing in volumetric muscle loss [J]. The Journal of Practical Medicine, 2022, 38(20): 2510-2517. |
[3] |
XIE Zhihong, PENG Wuxun.
Research progress of bone marrow mesenchymal stem in the treatment of osteonecrosis of femoral head
[J]. The Journal of Practical Medicine, 2021, 37(1): 20-24.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||