The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (13): 2100-2104.doi: 10.3969/j.issn.1006-5725.2025.13.023
• Reviews • Previous Articles Next Articles
Yajie HAN,Jian WANG,Zongbin SONG()
Received:
2025-04-28
Online:
2025-07-10
Published:
2025-07-18
Contact:
Zongbin SONG
E-mail:songzb@csu.edu.cn
CLC Number:
Yajie HAN,Jian WANG,Zongbin SONG. Research progress on region⁃specific synaptic plasticity in the central nervous system involved in morphine tolerance[J]. The Journal of Practical Medicine, 2025, 41(13): 2100-2104.
[1] |
MAGEE J C, GRIENBERGER C. Synaptic Plasticity Forms and Functions[J]. Annu Rev Neurosci, 2020, 43:95-117. doi:10.1146/annurev-neuro-090919-022842
doi: 10.1146/annurev-neuro-090919-022842 |
[2] |
ROTH R H, DING J B. Cortico-basal ganglia plasticity in motor learning[J]. Neuron, 2024, 112(15):2486-2502. doi:10.1016/j.neuron.2024.06.014
doi: 10.1016/j.neuron.2024.06.014 |
[3] | 郄晓娟,李清开,刘颖,等. 基于补体C3及TGFβ1/Smad信号通路探究七氟烷麻醉对老龄小鼠突触可塑性及工作记忆力损伤的机制[J]. 实用医学杂志,2023,39(2):204-208. |
[4] | 王兆涛,徐如祥,马全红,等. 过表达精神分裂断裂基因1对APP/PS1转基因阿尔茨海默病小鼠突触可塑性及学习记忆能力的改善[J]. 实用医学杂志,2021,37(9):1117-1126. |
[5] |
BRENNAN F H, SWARTS E A, KIGERL K A, et al. Microglia promote maladaptive plasticity in autonomic circuitry after spinal cord injury in mice[J]. Sci Transl Med, 2024, 16(751):eadi3259. doi:10.1126/scitranslmed.adi3259
doi: 10.1126/scitranslmed.adi3259 |
[6] |
DEJANOVIC B, SHENG M, HANSON J E. Targeting synapse function and loss for treatment of neurodegenerative diseases[J]. Nat Rev Drug Discov, 2024, 23(1):23-42. doi:10.1038/s41573-023-00823-1
doi: 10.1038/s41573-023-00823-1 |
[7] |
CHU W G, WANG F D, SUN Z C, et al. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity[J]. FASEB J, 2020, 34(6):8526-8543. doi:10.1096/fj.202000154rr
doi: 10.1096/fj.202000154rr |
[8] |
CHEN S R, CHEN H, JIN D, et al. Brief Opioid Exposure Paradoxically Augments Primary Afferent Input to Spinal Excitatory Neurons via alpha2delta-1-Dependent Presynaptic NMDA Receptors[J]. J Neurosci, 2022, 42(50):9315-9329. doi:10.1523/jneurosci.1704-22.2022
doi: 10.1523/jneurosci.1704-22.2022 |
[9] |
BISCHOFF F P, VAN BRANDT S, VIELLEVOYE M, et al. Design, Synthesis, and Characterization of GluN2A Negative Allosteric Modulators Suitable for In Vivo Exploration[J]. J Med Chem, 2025, 68(4):4672-4693. doi:10.1021/acs.jmedchem.4c02751
doi: 10.1021/acs.jmedchem.4c02751 |
[10] |
ABED A S AL, SELLAMI A, POTIER M, et al. Age-related impairment of declarative memory: Linking memorization of temporal associations to GluN2B redistribution in dorsal CA1[J]. Aging Cell, 2020, 19(10):e13243. doi:10.1111/acel.13243
doi: 10.1111/acel.13243 |
[11] |
HANSON J E, YUAN H, PERSZYK R E, et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry[J]. Neuropsychopharmacology, 2024, 49(1):51-66. doi:10.1038/s41386-023-01614-3
doi: 10.1038/s41386-023-01614-3 |
[12] |
BUONARATI O R, HAMMES E A, WATSON J F, et al. Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation[J]. Sci Signal, 2019, 12(562):eaar6889. doi:10.1126/scisignal.aar6889
doi: 10.1126/scisignal.aar6889 |
[13] |
RAHBAN M, DANYALI S, ZARINGHALAM J,et al. Pharmacological blockade of neurokinin1 receptor restricts morphine-induced tolerance and hyperalgesia in the rat[J]. Scand J Pain, 2022, 22(1):193-203. doi:10.1515/sjpain-2021-0052
doi: 10.1515/sjpain-2021-0052 |
[14] |
RODRÍGUEZ-MUÑOZ M, SÁNCHEZ-BLÁZQUEZ P, VICENTE-SÁNCHEZ A, et al. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: Implications in pain control[J]. Neuropsychopharmacology, 2012, 37(2):338-349. doi:10.1038/npp.2011.155
doi: 10.1038/npp.2011.155 |
[15] |
ZHOU Z, LIU A, XIA S, et al. The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning[J]. Nat Neurosci, 2018, 21(1):50-62. doi:10.1038/s41593-017-0030-z
doi: 10.1038/s41593-017-0030-z |
[16] |
HU X, TIAN X, GUO X, et al. AMPA receptor positive allosteric modulators attenuate morphine tolerance and dependence[J]. Neuropharmacology, 2018, 137:50-58. doi:10.1016/j.neuropharm.2018.04.020
doi: 10.1016/j.neuropharm.2018.04.020 |
[17] |
YAO C, FANG X, RU Q, et al. Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia[J]. Brain, 2024, 147(7):2507-2521. doi:10.1093/brain/awae106
doi: 10.1093/brain/awae106 |
[18] |
XIAO L, HAN X, WANG X E, et al. Spinal Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1) Signaling Contributes to Morphine-Induced Analgesic Tolerance in Rats[J]. Neuroscience, 2019, 413:206-218. doi:10.1016/j.neuroscience.2019.06.007
doi: 10.1016/j.neuroscience.2019.06.007 |
[19] |
NAZARI S, SADAT-SHIRAZI M S, SHAHBAZI A, et al. The effect of morphine administration on GluN3B NMDA receptor subunit mRNA expression in rat brain[J]. Acta Neurobiol Exp (Wars), 2024, 84(1):89-97. doi:10.55782/ane-2024-2545
doi: 10.55782/ane-2024-2545 |
[20] |
NEJAD G G, MOTTARLINI F, TAVASSOLI Z, et al. Conditioned morphine tolerance promotes neurogenesis, dendritic remodeling and pro-plasticity molecules in the adult rat hippocampus[J]. Addict Biol, 2024, 29(3):e13377. doi:10.1111/adb.13377
doi: 10.1111/adb.13377 |
[21] |
DARVISHMOLLA M, SAEEDI N, TAVASSOLI Z, et al. Maladaptive plasticity induced by morphine is mediated by hippocampal astrocytic Connexin-43[J]. Life Sci, 2023, 330:121969. doi:10.1016/j.lfs.2023.121969
doi: 10.1016/j.lfs.2023.121969 |
[22] |
ANVARI S, JAVAN M, MIRNAJAFI-ZADEH J, et al. Repeated Morphine Exposure Alters Temporoamonic-CA1 Synaptic Plasticity in Male Rat Hippocampus[J]. Neuroscience, 2024, 545:148-157. doi:10.1016/j.neuroscience.2024.03.015
doi: 10.1016/j.neuroscience.2024.03.015 |
[23] |
GHAMKHARINEJAD G, MOTTARLINI F, TAVASSOLI Z, et al. Habituation to novel stimuli alters hippocampal plasticity associated with morphine tolerance in male Wistar rats[J]. Brain Res, 2025, 1853:149508. doi:10.1016/j.brainres.2025.149508
doi: 10.1016/j.brainres.2025.149508 |
[24] |
CAO S, XIAO Z, SUN M, et al. D-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats[J]. Mol Pain, 2016, 12:1744806916646786. doi:10.1177/1744806916646786
doi: 10.1177/1744806916646786 |
[25] |
DENG M, CHEN S R, CHEN H, et al. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance[J]. J Neurochem, 2019, 148(2):275-290. doi:10.1111/jnc.14628
doi: 10.1111/jnc.14628 |
[26] |
JIN D, CHEN H, ZHOU M H, et al. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors[J]. J Neurosci, 2023, 43(31):5593-5607. doi:10.1523/jneurosci.0601-23.2023
doi: 10.1523/jneurosci.0601-23.2023 |
[27] |
OHASHI Y, SAKHRI F Z, IKEMOTO H, et al. Yokukansan Inhibits the Development of Morphine Tolerance by Regulating Presynaptic Proteins in DRG Neurons[J]. Front Pharmacol, 2022, 13:862539. doi:10.3389/fphar.2022.862539
doi: 10.3389/fphar.2022.862539 |
[28] |
ZHONG W, MA X, XING Y, et al. Blockade of peripheral nociceptive signal input relieves the formation of spinal central sensitization and retains morphine efficacy in a neuropathic pain rat model[J]. Neurosci Lett, 2020, 716:134643. doi:10.1016/j.neulet.2019.134643
doi: 10.1016/j.neulet.2019.134643 |
[29] |
YUAN L, LUO L, MA X, et al. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice[J]. Neuropharmacology, 2020, 176:108222. doi:10.1016/j.neuropharm.2020.108222
doi: 10.1016/j.neuropharm.2020.108222 |
[30] |
WILSON-POE A R, JEONG H J, VAUGHAN C W. Chronic morphine reduces the readily releasable pool of GABA, a presynaptic mechanism of opioid tolerance[J]. J Physiol, 2017, 595(20):6541-6555. doi:10.1113/jp274157
doi: 10.1113/jp274157 |
[31] |
ZHU Q M, WU L X, ZHANG B, et al. Donepezil prevents morphine tolerance by regulating N-methyl-d-aspartate receptor, protein kinase C and CaM-dependent kinase II expression in rats[J]. Pharmacol Biochem Behav, 2021, 206:173209. doi:10.1016/j.pbb.2021.173209
doi: 10.1016/j.pbb.2021.173209 |
[32] |
HIROKI T, SUTO T, OHTA J, et al. Spinal gamma-Aminobutyric Acid Interneuron Plasticity Is Involved in the Reduced Analgesic Effects of Morphine on Neuropathic Pain[J]. J Pain, 2022, 23(4):547-557. doi:10.1016/j.jpain.2021.10.002
doi: 10.1016/j.jpain.2021.10.002 |
[33] |
ZHANG J, LIU Z, LIU X, et al. Intravenous Injection of GluR2-3Y Inhibits Repeated Morphine-Primed Reinstatement of Drug Seeking in Rats[J]. Brain Sci, 2023, 13(4):590. doi:10.3390/brainsci13040590
doi: 10.3390/brainsci13040590 |
[34] |
RUSSELL S E, PUTTICK D J, SAWYER A M, et al. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats[J]. J Neurosci, 2016, 36(21):5748-5762. doi:10.1523/jneurosci.2875-12.2016
doi: 10.1523/jneurosci.2875-12.2016 |
[35] |
GEOFFROY H, CANESTRELLI C, MARIE N, et al. Morphine-Induced Dendritic Spine Remodeling in Rat Nucleus Accumbens Is Corticosterone Dependent[J]. Int J Neuropsychopharmacol, 2019, 22(6):394-401. doi:10.1093/ijnp/pyz014
doi: 10.1093/ijnp/pyz014 |
[36] |
MADAYAG A C, GOMEZ D, ANDERSON E M, et al. Cell-type and region-specific nucleus accumbens AMPAR plasticity associated with morphine reward, reinstatement, and spontaneous withdrawal[J]. Brain Struct Funct, 2019, 224(7):2311-2324. doi:10.1007/s00429-019-01903-y
doi: 10.1007/s00429-019-01903-y |
[37] |
LEFEVRE E M, GAUTHIER E A, BYSTROM L L, et al. Differential Patterns of Synaptic Plasticity in the Nucleus Accumbens Caused by Continuous and Interrupted Morphine Exposure[J]. J Neurosci, 2023, 43(2):308-318. doi:10.1523/jneurosci.0595-22.2022
doi: 10.1523/jneurosci.0595-22.2022 |
[38] |
JAECKEL E R, ARIAS-HERVERT E R, PEREZ-MEDINA A L, et al. Chronic morphine treatment induces sex- and synapse-specific cellular tolerance on thalamo-cortical mu opioid receptor signaling[J]. J Neurophysiol, 2024, 132(3):968-978. doi:10.1152/jn.00265.2024
doi: 10.1152/jn.00265.2024 |
[39] |
CHEN G, HAN W, LI A, et al. Phosphorylation of GluN2B subunits of N-methyl-d-aspartate receptors in the frontal association cortex involved in morphine-induced conditioned place preference in mice[J]. Neurosci Lett, 2021, 741:135470. doi:10.1016/j.neulet.2020.135470
doi: 10.1016/j.neulet.2020.135470 |
[40] |
YANG Z Z, LI L, WANG L, et al. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: A mechanism for acute morphine tolerance suppression[J]. Sci Rep, 2016, 6:33338. doi:10.1038/srep33338
doi: 10.1038/srep33338 |
[41] |
SENEY M L, KIM S M, GLAUSIER J R, et al. Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder[J]. Biol Psychiatry, 2021, 90(8):550-562. doi:10.1016/j.biopsych.2021.06.007
doi: 10.1016/j.biopsych.2021.06.007 |
[42] |
LASEK A W, CHEN H, CHEN W Y. Releasing Addiction Memories Trapped in Perineuronal Nets[J]. Trends Genet, 2018, 34(3):197-208. doi:10.1016/j.tig.2017.12.004
doi: 10.1016/j.tig.2017.12.004 |
[43] |
CHEN Y H, HU N Y, WU D Y, et al. PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction[J]. Mol Psychiatry, 2022, 27(2):896-906. doi:10.1038/s41380-021-01355-z
doi: 10.1038/s41380-021-01355-z |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||