The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (6): 911-915.doi: 10.3969/j.issn.1006-5725.2025.06.021
• Reviews • Previous Articles
Haojun ZHANG1,Mei JING1,Yufeng ZHU2,Tianpeng XU2,Xi CHEN2,Rongyi SHI2,Yi. SHAN2()
Received:
2024-12-02
Online:
2025-03-25
Published:
2025-03-31
Contact:
Yi. SHAN
E-mail:shanyi831@163.com
CLC Number:
Haojun ZHANG,Mei JING,Yufeng ZHU,Tianpeng XU,Xi CHEN,Rongyi SHI,Yi. SHAN. Impact of microbiota⁃gut⁃brain axis on neuroinflammation after post⁃cardiac arrest brain injury[J]. The Journal of Practical Medicine, 2025, 41(6): 911-915.
1 | GREIF R, BHANJI F, BIGHAM B L, et al. Education, Implementation, and Teams: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations [J]. Resuscitation, 2020,156: A188-A239. |
2 | SOAR J, BERG K M, ANDERSEN L W, et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations [J]. Resuscitation, 2020,156: A80-A119. |
3 |
PERKINS G D, CALLAWAY C W, HAYWOOD K, et al. Brain injury after cardiac arrest [J]. Lancet, 2021,398(10307): 1269-1278. doi:10.1016/s0140-6736(21)00953-3
doi: 10.1016/s0140-6736(21)00953-3 |
4 |
BALU R, RAJAGOPALAN S, BAGHSHOMALI S, et al. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury [J]. Resuscitation, 2021,164: 114-121. doi:10.1016/j.resuscitation.2021.04.023
doi: 10.1016/j.resuscitation.2021.04.023 |
5 |
KJAERGAARD J, MØLLER J E, SCHMIDT H, et al. Blood-Pressure Targets in Comatose Survivors of Cardiac Arrest [J]. N Engl J Med, 2022,387(16): 1456-1466. doi:10.1056/nejmoa2208687
doi: 10.1056/nejmoa2208687 |
6 | SCHMIDT H, KJAERGAARD J, HASSAGER C, et al. Oxygen Targets in Comatose Survivors of Cardiac Arrest [J]. N Engl J Med, 2022,387(16): 1467-1476. |
7 |
PERKINS G D, NEUMAR R, HSU C H, et al. Improving Outcomes After Post-Cardiac Arrest Brain Injury: A Scientific Statement From the International Liaison Committee on Resuscitation [J]. Circulation, 2024.doi: 10.1161/CIR.0000000000001219 . Online ahead of print.
doi: 10.1161/CIR.0000000000001219 |
8 |
SANDRONI C, CRONBERG T, SEKHON M. Brain injury after cardiac arrest: Pathophysiology, treatment, and prognosis [J]. Intensive Care Med, 2021,47(12): 1393-1414. doi:10.1007/s00134-021-06548-2
doi: 10.1007/s00134-021-06548-2 |
9 |
MEYER M A S, WIBERG S, GRAND J, et al. Treatment Effects of Interleukin-6 Receptor Antibodies for Modulating the Systemic Inflammatory Response After Out-of-Hospital Cardiac Arrest (The IMICA Trial): A Double-Blinded, Placebo-Controlled, Single-Center, Randomized, Clinical Trial [J]. Circulation, 2021, 143(19): 1841-1851. doi:10.1161/circulationaha.120.053318
doi: 10.1161/circulationaha.120.053318 |
10 | 奚可欣, 赵宇骐, 谢晓婷, 等. 肠道菌群对胶质瘤的调控作用研究进展 [J]. 实用医学杂志, 2024,40(14): 2027-2030. |
11 |
MORAIS L H, SCHREIBER H L T, MAZMANIAN S K. The gut microbiota-brain axis in behaviour and brain disorders [J]. Nat Rev Microbiol, 2021,19(4): 241-255. doi:10.1038/s41579-020-00460-0
doi: 10.1038/s41579-020-00460-0 |
12 |
HOILAND R L, AINSLIE P N, WELLINGTON C L, et al. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post–Cardiac Arrest [J]. Circ Res, 2021,129(5): 583-597. doi:10.1161/circresaha.121.319157
doi: 10.1161/circresaha.121.319157 |
13 |
OUSTA A, PIAO L, FANG Y H, et al. Microglial Activation and Neurological Outcomes in a Murine Model of Cardiac Arrest [J]. Neurocrit Care, 2022,36(1): 61-70. doi:10.1007/s12028-021-01253-w
doi: 10.1007/s12028-021-01253-w |
14 |
WANG M, PAN W, XU Y, et al. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases [J]. J Inflamm Res, 2022,15: 3083-3094. doi:10.2147/jir.s350109
doi: 10.2147/jir.s350109 |
15 |
CHANG Y, ZHU J, WANG D, et al. NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury [J]. J Neuroinflammation, 2020,17(1): 219. doi:10.1186/s12974-020-01879-1
doi: 10.1186/s12974-020-01879-1 |
16 |
ZHENG G, HE F, XU J, et al. The Selective NLRP3-inflammasome inhibitor MCC950 Mitigates Post-resuscitation Myocardial Dysfunction and Improves Survival in a Rat Model of Cardiac Arrest and Resuscitation [J]. Cardiovasc Drugs Ther, 2023,37(3): 423-433. doi:10.1007/s10557-021-07282-z
doi: 10.1007/s10557-021-07282-z |
17 |
LINNERBAUER M, WHEELER M A, QUINTANA F J. Astrocyte Crosstalk in CNS Inflammation [J]. Neuron, 2020,108(4): 608-622. doi:10.1016/j.neuron.2020.08.012
doi: 10.1016/j.neuron.2020.08.012 |
18 |
SHEN X Y, GAO Z K, HAN Y, et al. Activation and Role of Astrocytes in Ischemic Stroke [J]. Front Cell Neurosci, 2021,15: 755955. doi:10.3389/fncel.2021.755955
doi: 10.3389/fncel.2021.755955 |
19 |
LING Y, GONG T, ZHANG J, et al. Gut Microbiome Signatures Are Biomarkers for Cognitive Impairment in Patients With Ischemic Stroke [J]. Front Aging Neurosci, 2020,12: 511562. doi:10.3389/fnagi.2020.511562
doi: 10.3389/fnagi.2020.511562 |
20 |
YU S, XU J, WU C, et al. Multi-omics Study of Hypoxic-Ischemic Brain Injury After Cardiopulmonary Resuscitation in Swine [J]. Neurocrit Care, 2024.doi: 10.1007/s12028-024-02038-7 . Online ahead of print.
doi: 10.1007/s12028-024-02038-7 |
21 |
YUAN Q, SUN L, MA G, et al. Alterations of the gut microbial community structure modulates the Th17 cells response in a rat model of asphyxial cardiac arrest [J]. Biochem Biophys Rep, 2023,35: 101543. doi:10.1016/j.bbrep.2023.101543
doi: 10.1016/j.bbrep.2023.101543 |
22 |
LI X, YIN X, PANG J, et al. Hydrogen sulfide inhibits lipopolysaccharide-based neuroinflammation-induced astrocyte polarization after cerebral ischemia/reperfusion injury [J]. Eur J Pharmacol, 2023,949: 175743. doi:10.1016/j.ejphar.2023.175743
doi: 10.1016/j.ejphar.2023.175743 |
23 |
WENZEL T J, GATES E J, RANGER A L, et al. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells [J]. Mol Cell Neurosci, 2020,105: 103493. doi:10.1016/j.mcn.2020.103493
doi: 10.1016/j.mcn.2020.103493 |
24 |
MARTINEZ M, YU W, MENDEN H L, et al. Butyrate suppresses experimental necrotizing enterocolitis-induced brain injury in mice [J]. Front Pediatr, 2023,11: 1284085. doi:10.3389/fped.2023.1284085
doi: 10.3389/fped.2023.1284085 |
25 |
XIAO W, SU J, GAO X, et al. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids [J]. Microbiome, 2022,10(1): 62. doi:10.1186/s40168-022-01255-6
doi: 10.1186/s40168-022-01255-6 |
26 |
LI T T, ZHAO D M, WEI Y T, et al. Effect and Mechanism of Sodium Butyrate on Neuronal Recovery and Prognosis in Diabetic Stroke [J]. J Neuroimmune Pharmacol, 2023,18(3): 366-382. doi:10.1007/s11481-023-10071-0
doi: 10.1007/s11481-023-10071-0 |
27 |
YUAN C, SHI L, SUN Z, et al. Regulatory T cell expansion promotes white matter repair after stroke [J]. Neurobiol Dis, 2023,179: 106063. doi:10.1016/j.nbd.2023.106063
doi: 10.1016/j.nbd.2023.106063 |
28 |
MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al. SCFA: Mechanisms and functional importance in the gut [J]. Proc Nutr Soc, 2021,80(1): 37-49. doi:10.1017/s0029665120006916
doi: 10.1017/s0029665120006916 |
29 |
SCHONFELD P, WOJTCZAK L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective [J]. J Lipid Res, 2016,57(6): 943-954. doi:10.1194/jlr.r067629
doi: 10.1194/jlr.r067629 |
30 | MITCHELL R W, ON N H, DEL BIGIO M R, et al. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells [J]. J Neurochem, 2011,117(4): 735-746. |
31 |
SADLER R, CRAMER J V, HEINDL S, et al. Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms [J]. J Neurosci, 2020,40(5): 1162-1173. doi:10.1523/jneurosci.1359-19.2019
doi: 10.1523/jneurosci.1359-19.2019 |
32 |
SILVA Y P, BERNARDI A, FROZZA R L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication [J]. Front Endocrinol (Lausanne), 2020,11: 25. doi:10.3389/fendo.2020.00025
doi: 10.3389/fendo.2020.00025 |
33 |
ZHOU Z, XU N, MATEI N, et al. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats [J]. J Cereb Blood Flow Metab, 2021,41(2): 267-281. doi:10.1177/0271678x20910533
doi: 10.1177/0271678x20910533 |
34 |
WEI H, YU C, ZHANG C, et al. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis [J]. Biomed Pharmacother, 2023,160: 114308. doi:10.1016/j.biopha.2023.114308
doi: 10.1016/j.biopha.2023.114308 |
35 |
MA B D Y, CHAN T Y H, LO B W Y. Unveiling the hidden culprit: How the brain-gut axis fuels neuroinflammation in ischemic stroke [J]. Surg Neurol Int, 2024,15: 394. doi:10.25259/sni_703_2024
doi: 10.25259/sni_703_2024 |
36 |
PASOKH A, FARZIPOUR M, MAHMOUDI J, et al. The effect of fecal microbiota transplantation on stroke outcomes: A systematic review [J]. J Stroke Cerebrovasc Dis, 2022,31(11): 106727. doi:10.1016/j.jstrokecerebrovasdis.2022.106727
doi: 10.1016/j.jstrokecerebrovasdis.2022.106727 |
37 |
BENAKIS C, LIESZ A. The gut-brain axis in ischemic stroke: Its relevance in pathology and as a therapeutic target [J]. Neurol Res Pract, 2022,4(1): 57. doi:10.1186/s42466-022-00222-8
doi: 10.1186/s42466-022-00222-8 |
38 |
WANG X, SUN Z, YANG T, et al. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition [J]. mSystems, 2023,8(4): e0041523. doi:10.1128/msystems.00915-23
doi: 10.1128/msystems.00915-23 |
39 |
REN Q, HE C, SUN Y, et al. Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota [J]. Front Pharmacol, 2024,15: 1461873. doi:10.3389/fphar.2024.1461873
doi: 10.3389/fphar.2024.1461873 |
40 |
ZHAO Q, SHEN Y, LI R, et al. Cardiac arrest and resuscitation activates the hypothalamic-pituitary-adrenal axis and results in severe immunosuppression [J]. J Cereb Blood Flow Metab, 2021,41(5): 1091-1102. doi:10.1177/0271678x20948612
doi: 10.1177/0271678x20948612 |
41 |
HASSAMAL S. Chronic stress, neuroinflammation, and depression: An overview of pathophysiological mechanisms and emerging anti-inflammatories [J]. Front Psychiatry, 2023,14: 1130989. doi:10.3389/fpsyt.2023.1130989
doi: 10.3389/fpsyt.2023.1130989 |
42 |
MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease [J]. Trends Endocrinol Metab, 2022,33(4): 247-265. doi:10.1016/j.tem.2022.01.002
doi: 10.1016/j.tem.2022.01.002 |
43 |
CONN K A, BORSOM E M, COPE E K. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease [J]. Gut Microbes, 2024,16(1): 2371950. doi:10.1080/19490976.2024.2371950
doi: 10.1080/19490976.2024.2371950 |
44 |
MADISON A A, BAILEY M T. Stressed to the Core: Inflammation and Intestinal Permeability Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes [J]. Biol Psychiatry, 2024,95(4): 339-347. doi:10.1016/j.biopsych.2023.10.014
doi: 10.1016/j.biopsych.2023.10.014 |
45 |
PAN I, ISSAC P K, RAHMAN M M, et al. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases [J]. Mol Neurobiol, 2024,61(12): 9873-9891. doi:10.1007/s12035-023-03691-3
doi: 10.1007/s12035-023-03691-3 |
46 |
KAKINUMA Y. Significance of vagus nerve function in terms of pathogenesis of psychosocial disorders [J]. Neurochem Int, 2021,143: 104934. doi:10.1016/j.neuint.2020.104934
doi: 10.1016/j.neuint.2020.104934 |
47 |
WANG Y, TAN Q, PAN M, et al. Minimally invasive vagus nerve stimulation modulates mast cell degranulation via the microbiota-gut-brain axis to ameliorate blood-brain barrier and intestinal barrier damage following ischemic stroke [J]. Int Immunopharmacol, 2024,132: 112030. doi:10.1016/j.intimp.2024.112030
doi: 10.1016/j.intimp.2024.112030 |
48 |
XIE J, BRUGGEMAN A, DE NOLF C, et al. Gut microbiota regulates blood-cerebrospinal fluid barrier function and Aβ pathology [J]. Embo J, 2023,42(17): e111515. doi:10.15252/embj.2022111515
doi: 10.15252/embj.2022111515 |
49 |
ANDERSEN L W, LIND P C, VAMMEN L, et al. Adult post-cardiac arrest interventions: An overview of randomized clinical trials [J]. Resuscitation, 2020,147: 1-11. doi:10.1016/j.resuscitation.2019.12.003
doi: 10.1016/j.resuscitation.2019.12.003 |
50 | 刘远山, 余凯, 黄子通, 等. 利用模拟人研究操作者疲劳和心肺复苏质量相关性 [J]. 实用医学杂志, 2020,36(24): 3430-3433. |
51 | 李星明, 孙广琦, 郑雯, 等. 心肺复苏后昏迷患者神经功能预后生物标志物的研究进展 [J]. 实用休克杂志(中英文), 2024,8(5): 290-298. |
52 | 姚准, 赵元瑞, 余追. 心搏骤停后脑损伤的病理生理改变的研究进展 [J]. 卒中与神经疾病, 2024,31(3): 302-306. |
[1] | Pan LIU,Deshuang XI,Rui HUANG,Yilin TENG,Rui LIU,Gaofeng ZENG,Shaohui. ZONG. Short⁃chain fatty acids alleviate γδT cell⁃mediated inflammatory response via inhibiting IL⁃17A and NF⁃κB signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(8): 1088-1094. |
[2] | Gengzhou WEI,Guoge HUANG,Chuangzhi ZHU,Wenqiang JIANG,Bei. HU. Analysis of the application and prognostic factors of extracorporeal cardiopulmonary resuscitation (ECPR) in patients with refractory cardiac arrest in the emergency department [J]. The Journal of Practical Medicine, 2024, 40(24): 3446-3451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||