1 |
NABORS L B, PORTNOW J, AHLUWALIA M, et al. Central Nervous System Cancers, Version 3, 2020, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2020, 18(11):1537-1570.
|
2 |
ALDAPE K, BRINDLE K M, CHESLER L, et al. Challenges to curing primary brain tumours[J]. Nat Rev Clin Oncol, 2019, 16(8):509-520.
|
3 |
LEE S Y. Temozolomide resistance in glioblastoma multiforme[J]. Genes Dis, 2016, 3(3):198-210.
|
4 |
BISEROVA K, JAKOVLEVS A, ULJANOVS R, et al. Cancer Stem Cells: Significance in Origin, Pathogenesis and Treatment of Glioblastoma[J]. Cells, 2021, 10(3):621-640.
|
5 |
GEORGE S, PILI R. Tasquinimod: a novel angiogenesis inhibitor-development in prostate cancer[J]. Curr Oncol Rep, 2013, 15(2):65-68.
|
6 |
GONG P, LIU H, LIU X, et al. Efficacy of tasquinimod in men with metastatic castration-resistant prostate cancer: A meta-analysis of randomized controlled trials[J]. Medicine, 2018, 97(46):e13204.
|
7 |
ISAACSJ T, ANTONY L, DALRYMPLE S L, et al. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment[J]. Cancer Res, 2013, 73(4):1386-1399.
|
8 |
GUPTA N, Al USTWANI O, SHEN L, et al. Mechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancer[J]. Onco Targets Ther, 2014, 7:223-234.
|
9 |
RAYMONG E, DALGLEISH A, DAMBER J E, et al. Mechanisms of action of tasquinimod on the tumour microenvironment[J]. Cancer Chemother Pharmacol, 2014, 73(1):1-8.
|
10 |
WANG Y, XIA Y, HU K, et al. MKK7 transcription positively or negatively regulated by SP1 and KLF5 depends on HDAC4 activity in glioma[J]. Int J Cancer, 2019, 145(9): 2496-2508.
|
11 |
DOLL J A, REIHER F K, CRAWFORD S E, et al. Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate[J]. Prostate, 2001, 49(4):293-305.
|
12 |
LAWLER J. Counter regulation of tumor angiogenesis by vascular endothelial growth factor and thrombospondin-1[J]. Semin Cancer Biol, 2022, 86(Pt 2):126-135.
|
13 |
DVORAK H F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy[J]. J Clin Oncol, 2002, 20(21):4368-4380.
|
14 |
SHEN L, PILI R. Tasquinimod targets suppressive myeloid cells in the tumor microenvironment[J]. Oncoimmunology, 2018, 8(10):e1072672.
|
15 |
CHENG P, CORZO C A, LUETTEKE N, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein[J]. J Exp Med, 2008, 205(10):2235-2249.
|
16 |
PELLETIER M, SIMARD J C, GIRARD D, et al. Quinoline-3-carboxamides such as tasquinimod are not specific inhibitors of S100A9[J]. Blood Adv, 2018, 2(10):1170-1171.
|
17 |
CAI J Y, XU T T, WANG Y, et al. Histone deacetylase HDAC4 promotes the proliferation and invasion of glioma cells[J]. Int J Oncol, 2018, 53(6):2758-2768.
|
18 |
ISER I C, PEREIRA M B, LENZ G, et al. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation[J]. Med Res Rev, 2017, 37(2):271-313.
|
19 |
潘琦璐, 马礼兵. 上皮-间质转化在恶性肿瘤发病和侵袭转移中的作用研究进展[J].实用医学杂志, 2020, 36(17):2443-2447.
|
20 |
PARK I H, KANG J H, SHIN J M, et al. Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium[J]. PLoS One, 2016, 11(8):e0162058
|
21 |
CHENG C, YANG J, LI S W, et al. HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target[J]. Cell Death Dis, 2021, 12(2):137.
|
22 |
YABO Y A, NICLOU S P, GOLEBIEWSKA A. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma[J]. Neuro Oncol, 2022, 24(5):669-682.
|
23 |
LAN X, JÖRG D J, CAVALLI F M G, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy[J]. Nature, 2017, 549(7671):227-232.
|