实用医学杂志 ›› 2022, Vol. 38 ›› Issue (5): 527-531.doi: 10.3969/j.issn.1006⁃5725.2022.05.001

• 新型冠状病毒肺炎专栏 •    下一篇

基于定量CT 构建的诺模图对重症新型冠状病毒肺炎的诊断价值

黄晓旗1 阴玮灵2 王莉1 史柯3 周婕4 梁玉栋5 刘亚良6 张静平7 金晨望7 郭佑民7   

  1. 1 延安大学附属医院影像科(陕西延安 716000);2 延安大学(陕西延安 716000);3 安康市人民医院放射科 (陕西安康 725000);4 西安市胸科医院放射科(西安 710061);5 渭南市中心医院CT/MR影像诊断科(陕西渭南 714000);6 汉中市中心医院放射科(陕西汉中 723000);7 西安交通大学第一附属医院放射科(西安710061)

  • 出版日期:2022-03-10 发布日期:2022-03-10
  • 通讯作者: 郭佑民 E⁃mail:cjr.guoyoumin@163.com
  • 基金资助:
    陕西省教育厅 2020 年度突发公共卫生安全专项科学研究计划资助项目(编号:20JG040)

Establishment and evaluation of normogram in prediction of severe COVID ⁃19 based on quantitative CT

HUANG Xiaoqi*,YIN Weiling#,WANG Li,SHI Ke,ZHOU Jie,LIANG Yudong,LIU Yaliang,ZHANG Jingping, JIN Chenwang,GUO Youmin.   

  1. Department of Medical Imaging,Affiliated Hospital of Yan′an University,Yan′an 716000,China;# Yan′an University,Yan′an 716000,China 

  • Online:2022-03-10 Published:2022-03-10
  • Contact: GUO Youmin E⁃mail:cjr.guoyoumin@163.com

摘要:

目的 探讨基于定量 CT 构建的诺模图对重症新型冠状病毒肺炎的诊断价值。方法 回顾性分析 117 例新型冠状病毒肺炎(corona virus disease 2019,COVID⁃19)患者的临床和胸部 CT 资料。所有患者分为轻症组(82 例)和重症组(35 例)。对两组间差异有统计学意义的临床和定量 CT 指标进行 多因素 logistic 回归分析,确定重症 COVID⁃19 相关的独立危险因素,构建诺模图,并通过 ROC 曲线分析、 校准曲线及 Hosmer⁃Lemeshow 拟合优度检验进行模型验证。结果 多因素 logistic 回归结果显示年龄 OR = 1.155,95%CI:1.069 ~ 1.247)、淋巴细胞计数与白细胞计数比值(OR < 0.001,95%CI:0 ~ 0.005)、 LeV%(OR = 1.136,95%CI:1.013 ~ 1.274)、MLeD(OR = 1.009,95%CI:1.001 ~ 1.018)是重症 COVID⁃19 影响因素。绘制诺模图,其 ROC 曲线下面积为 0.969,校准曲线显示预测概率与实际概率符合度良好。 Hosmer⁃Lemeshow 拟合优度检验(χ2 = 4.352,P = 0.824)显示诺模图诊断重症 COVID⁃19 具有较好效能。 结论 基于定量CT 构建的诺模图对于重症COVID⁃19的临床诊断具有较好的效能。

关键词: 新型冠状病毒肺炎,  , 定量CT,  , 诺模图

Abstract:

Objective To explore the efficiency of nomogram based on quantitative CT in prediction of severe corona virus disease 2019(COVID⁃19). Methods The clinical and chest CT data on 117 COVID⁃19 patients were retrospectively analyzed. All the patients were divided into a mild group(82 patients)and a severe group (35 patients). Multivariate Logistic regression analysis was performed on the clinical and quantitative CT indexes which had significant differences between the two groups to determine the independent risk factors associated with severe COVID⁃19. Nomogram was constructed for predicting severe COVID⁃19,and then verified by ROC analysis calibration curve and Hosmer⁃Lemeshow goodness⁃of⁃fit test. Results Multivariate logistic regression showed that age,lymphocyte count⁃to⁃white blood cell ratio,LeV%,and MLeD were independent risk factors for severe COVID⁃ 19. The area under the curve of nomogram was 0.969. The calibration curve showed that the predicted probability was highly concordant with the actual probability. Hosmer⁃Lemeshow goodness⁃of⁃fit test(χ2 = 4.352,P = 0.824 showed that nomogram had higher efficiency in predicting severe COVID⁃19. Conclusions The nomogram based on quantitative CT has better efficiency and application value in predicting severe COVID⁃19. 

Key words:

COVID?19,  , quantitative CT,  , nomogram