[1] |
YANG R, YANG H, WEI J, et al. Mechanisms Underlying the Effects of Lianhua Qingwen on Sepsis-Induced Acute Lung Injury: A Network Pharmacology Approach[J]. Frontiers in Pharmacology, 2021, 12: 717652. doi:10.3389/fphar.2021.717652
doi: 10.3389/fphar.2021.717652
|
[2] |
LIU Y, ZHANG Y, FENG Q, et al. GPA Peptide Attenuates Sepsis-Induced Acute Lung Injury in Mice via Inhibiting Oxidative Stress and Pyroptosis of Alveolar Macrophage[J]. Oxid Med Cell Longev, 2021, 2021:5589472. doi:10.1155/2021/5589472
doi: 10.1155/2021/5589472
|
[3] |
ZHOU B, ZHANG J, CHEN Y, et al. Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling[J]. Aging (Albany NY), 2022, 14(8):3617-3632.. doi:10.18632/aging.204033
doi: 10.18632/aging.204033
|
[4] |
XIONG C, HUANG X, CHEN S, et al. Role of Extracellular microRNAs in Sepsis-Induced Acute Lung Injury[J]. J Immunol Res, 2023, 2023:5509652. doi:10.1155/2023/5509652
doi: 10.1155/2023/5509652
|
[5] |
TAJASUWAN L, KETTAWAN A, RUNGRUANG T, et al. Inhibitory Effect of Dietary Defatted Rice Bran in an AOM/DSS-Induced Colitis-Associated Colorectal Cancer Experimental Animal Model[J]. Foods, 2022, 11(21):3488. doi:10.3390/foods11213488
doi: 10.3390/foods11213488
|
[6] |
SHEN S, WANG P, WU P, et al. CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury[J]. Mol Ther, 2024, 32(11):3974-3989. doi:10.1016/j.ymthe.2024.09.008
doi: 10.1016/j.ymthe.2024.09.008
|
[7] |
ZHANG Y, ZHA T, SONG G, et al. Unveiling the protective role of sevoflurane in video-assisted thoracoscopic surgery associated-acute lung injury: Inhibition of ferroptosis[J]. Pulm Pharmacol Ther, 2024, 86:102312. doi:10.1016/j.pupt.2024.102312
doi: 10.1016/j.pupt.2024.102312
|
[8] |
DING X, GAO X, REN A, et al. Sevoflurane enhances autophagy via Rac1 to attenuate lung ischaemia‒reperfusion injury[J]. Chem Biol Interact, 2024, 397:111078. doi:10.1016/j.cbi.2024.111078
doi: 10.1016/j.cbi.2024.111078
|
[9] |
OKUNO T, KOUTSOGIANNAKI S, HOU L, et al. Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Toll-like receptor 4 system[J]. FASEB J, 2019, 33(12):14528-14541. doi:10.1096/fj.201901570r
doi: 10.1096/fj.201901570r
|
[10] |
GONG Y, KANG P, WANG J, et al. Neuroprotective potential of sevoflurane against isoflurane induced cognitive dysfunction in rats via anti-inflammatory and antioxidant effect[J]. Acta Cir Bras, 2023, 38:e385523. doi:10.1590/acb385523
doi: 10.1590/acb385523
|
[11] |
王慧, 龚园其, 周仪华, 等. 青藤碱调控Nrf2/Keap1信号通路对脓毒症急性肺损伤的改善作用[J]. 实用医学杂志, 2022,38(15): 1896-1900. doi:10.3969/j.issn.1006-5725.2022.15.009
doi: 10.3969/j.issn.1006-5725.2022.15.009
|
[12] |
ZHANG E, ZHAO X, MA H, et al. A subanesthetic dose of sevoflurane combined with oxygen exerts bactericidal effects and prevents lung injury through the nitric oxide pathway during sepsis[J]. Biomed Pharmacother, 2020, 127:110169. doi:10.1016/j.biopha.2020.110169
doi: 10.1016/j.biopha.2020.110169
|
[13] |
SHEN Y, HE Y, PAN Y, et al. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury[J]. Front Pharmacol, 2024, 15:1415145. doi:10.3389/fphar.2024.1415145
doi: 10.3389/fphar.2024.1415145
|
[14] |
AN J, PARK SH, KO IG, et al. Polydeoxyribonucleotide Ameliorates Lipopolysaccharide-Induced Lung Injury by Inhibiting Apoptotic Cell Death in Rats[J]. Int J Mol Sci, 2017, 18(9):1847. doi:10.3390/ijms18091847
doi: 10.3390/ijms18091847
|
[15] |
XU Y, XIN J, SUN Y, et al. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment[J]. Pharmaceuticals (Basel), 2024, 17(4):472. doi:10.3390/ph17040472
doi: 10.3390/ph17040472
|
[16] |
WANG B, GU A, YAN J, et al. Kaempferol alleviates sepsis related acute lung injury by inhibiting the activation of alveolar macrophages mediated by extracellular vesicles from alveolar epithelial cells[J]. Int Immunopharmacol, 2025,162:115130.. doi:10.1016/j.intimp.2025.115130
doi: 10.1016/j.intimp.2025.115130
|
[17] |
ROMAGNOLI S, CHELAZZI C, VILLA G, et al. The New MIRUS System for Short-Term Sedation in Postsurgical ICU Patients[J]. Crit Care Med, 2017, 45(9):e925-e931. doi:10.1097/ccm.0000000000002465
doi: 10.1097/ccm.0000000000002465
|
[18] |
SCHLÄPFER M, PIEGELER T, DULL RO, et al. Propofol increases morbidity and mortality in a rat model of sepsis[J]. Crit Care, 2015, 19(1):45. doi:10.1186/s13054-015-0751-x
doi: 10.1186/s13054-015-0751-x
|
[19] |
LUNGU O, TOSCANI D, GIULIANI N. Mechanistic insights into bone destruction in multiple myeloma: Cellular and molecular perspectives[J]. J Bone Oncol, 2025, 51:100668. doi:10.1016/j.jbo.2025.100668
doi: 10.1016/j.jbo.2025.100668
|
[20] |
BAUMHOER D, BERTHOLD R, ISFORT I, et al. Recurrent CTNNB1 mutations in craniofacial osteomas[J]. Mod Pathol, 2022, 35(4):489-494. doi:10.1038/s41379-021-00956-x
doi: 10.1038/s41379-021-00956-x
|
[21] |
GHATAK S, HASCALL V C, KARAMANOS N, et al. Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance[J]. Front Oncol, 2022, 12:906260. doi:10.3389/fonc.2022.906260
doi: 10.3389/fonc.2022.906260
|
[22] |
MBOGO I, KAWANO C, NAKAMURA R, et al. A transphyletic study of metazoan β-catenin protein complexes[J]. Zoological Lett, 2024, 10(1):20. doi:10.1186/s40851-024-00243-y
doi: 10.1186/s40851-024-00243-y
|
[23] |
QIU Z, WANG X, YANG Z, et al. GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/β-catenin signalling pathway[J]. Cell Death Dis, 2022, 13(5):508. doi:10.1038/s41419-022-04968-6
doi: 10.1038/s41419-022-04968-6
|
[24] |
ZHU J, ZHENG Z, YIN Z, et al. MiR-146b overexpression promotes bladder cancer cell growth via the SMAD4/C-MYC/Cyclin D1 axis[J]. Front Oncol, 2025, 15:1565638. doi:10.3389/fonc.2025.1565638
doi: 10.3389/fonc.2025.1565638
|
[25] |
SHIROLE N H, KESAR D, LEE Y, et al. Requirement for Cyclin D1 Underlies Cell-Autonomous HIF2 Dependence in Kidney Cancer[J]. Cancer Discov, 2025, 15(7):1484-1504. doi:10.1158/2159-8290.cd-24-1378
doi: 10.1158/2159-8290.cd-24-1378
|
[26] |
杨汉立, 刘春志, 史明, 等. 基于Wnt/β-catenin信号通路调控神经元损伤探讨脊髓伤方对脊髓型颈椎病的效应机制[J]. 实用医学杂志, 2025,41(10): 1487-1495.
|
[27] |
WANG H, ZHONG Y, LI N, et al. Transcriptomic analysis and validation reveal the pathogenesis and a novel biomarker of acute exacerbation of chronic obstructive pulmonary disease[J]. Respir Res, 2022, 23(1):27. doi:10.1186/s12931-022-01950-w
doi: 10.1186/s12931-022-01950-w
|
[28] |
WANG S, LI X, MA Q, et al. Glutamine Metabolism Is Required for Alveolar Regeneration during Lung Injury[J]. Biomolecules, 2022, 12(5):728. doi:10.3390/biom12050728
doi: 10.3390/biom12050728
|
[29] |
JENSEN-CODY C W, CROOKE A K, ROTTI P G, et al. Lef-1 controls cell cycle progression in airway basal cells to regulate proliferation and differentiation[J]. Stem Cells, 2021, 39(9):1221-1235. doi:10.1002/stem.3386
doi: 10.1002/stem.3386
|
[30] |
ZHANG L, FAN M, NAPOLITANO F, et al. Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites[J]. J Transl Med, 2021, 19(1):31. doi:10.1186/s12967-020-02696-z
doi: 10.1186/s12967-020-02696-z
|
[31] |
ZHOU H, MEHTA S, SRIVASTAVA SP, et al. Endothelial cell-glucocorticoid receptor interactions and regulation of Wnt signaling[J]. JCI Insight, 2020, 5(3):e131384. doi:10.1172/jci.insight.131384
doi: 10.1172/jci.insight.131384
|
[32] |
LIU G, JIA G, REN Y, et al. Mechanism of lncRNA gadd7 regulating mitofusin 1 expression by recruiting LSD1 to down-regulate H3K9me3 level, and mediating mitophagy in alveolar type Ⅱ epithelial cell apoptosis in hyperoxia-induced acute lung injury[J]. Cell Biol Toxicol, 2025, 41(1):77. doi:10.1007/s10565-025-10021-x
doi: 10.1007/s10565-025-10021-x
|