[1] |
张希, 杨雷, 刘硕,等. 2022年全球恶性肿瘤统计报告解读[J]. 中华肿瘤杂志,2024,46(7):710-721.
|
[2] |
JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021,71(3):264-279. doi:10.3322/caac.21657
doi: 10.3322/caac.21657
|
[3] |
曹晖, 张子臻, 赵恩昊,等. 对早期胃癌内镜治疗的评价、思考及展望[J]. 中国实用外科杂志,2022,42(10):1097-1103.
|
[4] |
严超, 陆晟, 燕敏,等. 《日本胃癌治疗指南2021(第6版)》解读及瑞金实践[J]. 外科理论与实践,2023,28(4):326-354.
|
[5] |
徐惠绵, 潘四维. 胃癌诊治研究进展2021年度盘点[J]. 肿瘤学杂志,2022,28(2):81-85.
|
[6] |
XIANG Y, YAO L. Retrospective Analysis of Diagnosis and Treatment of Gastric Cancer at Huzhou Central Hospital[J]. Altern Ther Health Med, 2023,29(8):302-309.
|
[7] |
MURAKAMI D, YAMATO M, AMANO Y, et al. Challenging detection of hard-to-find gastric cancers with artificial intelligence-assisted endoscopy[J]. Gut, 2021,70(6):1196-1198. doi:10.1136/gutjnl-2020-322453
doi: 10.1136/gutjnl-2020-322453
|
[8] |
李茁钰, 刘凯, 张维汉,等. 全球及中国胃癌的流行病学特点及趋势:2018-2022《全球癌症统计报告》解读[J]. 中国普外基础与临床杂志,2024,31(10):1236-1245.
|
[9] |
ZHOU J, LI R, ZHAO S, et al. Sentinel Node Navigation Surgery for Early Gastric Cancer: A Narrative Review[J]. Am J Clin Oncol, 2024,47(9):439-444. doi:10.1097/coc.0000000000001101
doi: 10.1097/coc.0000000000001101
|
[10] |
HU H, GONG L, DONG D, et al. Identifying early gastric cancer under magnifying narrow-band images via deep learning:A multicenter study[J]. Gastrointest Endosc, 2020,93(6):1333-1341.e3. doi:10.1016/j.gie.2020.11.014
doi: 10.1016/j.gie.2020.11.014
|
[11] |
ZHU Y, WU K, WANG F Y. Efficacy of Magnifying Endoscopy with Narrow-Band Imaging in the Diagnosis of Early Gastric Cancer and Gastric Intraepithelial Neoplasia[J]. Turk J Gastroenterol, 2024,35(4):299-306.
|
[12] |
YOSHIDA T, DOHI O, SEYA M, et al. Diagnostic Ability of Magnifying Endoscopy Compared to Biopsy Examination for Early Gastric Cancer prior to Endoscopic Submucosal Dissection[J]. Dig Dis, 2025,43(3):358-367. doi:10.1159/000544045
doi: 10.1159/000544045
|
[13] |
徐自慧, 徐爱蕾, 刘美纯,等. 血清胃功能检测联合内镜精查在早期胃癌筛查中的意义[J]. 临床消化病杂志,2025,37(2):86-88.
|
[14] |
周伯琪, 曹云太, 杨瑷如,等. 影像组学及深度学习在预测结直肠癌相关基因突变的研究进展[J]. 磁共振成像,2025,16(2):198-203.
|
[15] |
FENG J, ZHANG Y, FENG Z, et al. A prospective and comparative study on improving the diagnostic accuracy of early gastric cancer based on deep convolutional neural network real-time diagnosis system (with video)[J]. Surg Endosc, 2025,39(3):1874-1884. doi:10.1007/s00464-025-11527-5
doi: 10.1007/s00464-025-11527-5
|
[16] |
JIANG B, BAO L, HE S, et al. Deep learning applications in breast cancer histopathological imaging:Diagnosis, treatment, and prognosis[J]. Breast Cancer Res, 2024,26(1):137. doi:10.1186/s13058-024-01895-6
doi: 10.1186/s13058-024-01895-6
|
[17] |
FAKHOURI H N, ALAWADI S, AWAYSHEH F M, et al. A cognitive deep learning approach for medical image processing[J]. Sci Rep, 2024,14(1):4539. doi:10.1038/s41598-024-55061-1
doi: 10.1038/s41598-024-55061-1
|
[18] |
ZHANG H, ZHAO Y, KANG H, et al. Multi-Input Deep Convolutional Neural Network Model for Short-Term Power Prediction of Photovoltaics[J]. Comput Intell Neurosci, 2022,2022:9350169. doi:10.1155/2022/9350169
doi: 10.1155/2022/9350169
|
[19] |
窦越群, 吴海波, 于勇,等. 超低剂量CT扫描结合深度学习图像重建对计算机辅助诊断系统定量分析肺结节的影响[J]. 中国介入影像与治疗学,2024,21(7):418-422.
|
[20] |
程兆瑞,王彤.人工智能技术在肝细胞癌诊断、复发及预后预测研究进展[J].中山大学学报(医学科学版),2023,44(6):903-909.
|
[21] |
韩英妹, 李一杰, 张衡,等. 深度学习在阿尔茨海默病疾病转化预测影像学研究中的应用价值[J]. 实用医学杂志,2025,41(9):1413-1424.
|
[22] |
陈哲, 李文洁, 韩旭,等. 人工智能技术在消化系统疾病诊断中应用的研究进展[J]. 国际消化病杂志,2022,42(2):81-85.
|
[23] |
SAKAI Y, TAKEMOTO S, HORI K, et al. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018,2018:4138-4141. doi:10.1109/embc.2018.8513274
doi: 10.1109/embc.2018.8513274
|
[24] |
LI L, CHEN Y, SHEN Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging[J]. Gastric Cancer, 2020,23(1):126-132. doi:10.1007/s10120-019-00992-2
doi: 10.1007/s10120-019-00992-2
|
[25] |
WANG L, YANG Y, YANG A, et al. Lightweight deep learning model incorporating an attention mechanism and feature fusion for automatic classification of gastric lesions in gastroscopic images[J]. Biomed Opt Express, 2023,14(9):4677-4695. doi:10.1364/boe.487456
doi: 10.1364/boe.487456
|
[26] |
LING T, WU L, FU Y, et al. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy[J]. Endoscopy, 2021,53(5):469-477. doi:10.1055/a-1229-0920
doi: 10.1055/a-1229-0920
|
[27] |
ZHANG L, ZHANG Y, WANG L, et al. Diagnosis of gastric lesions through a deep convolutional neural network[J]. Dig Endosc, 2021,33(5):788-796. doi:10.1111/den.13844
doi: 10.1111/den.13844
|
[28] |
UEYAMA H, KATO Y, AKAZAWA Y, et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging[J]. J Gastroenterol Hepatol, 2021,36(2):482-489. doi:10.1111/jgh.15190
doi: 10.1111/jgh.15190
|
[29] |
GAN T, YANG Y, LIU S, et al. Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network[J]. Gastroenterol Res Pract, 2021,2021:5682288. doi:10.1155/2021/5682288
doi: 10.1155/2021/5682288
|
[30] |
HIRASAWA T, AOYAMA K, TANIMOTO T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images[J]. Gastric Cancer, 2018,21(4):653-660. doi:10.1007/s10120-018-0793-2
doi: 10.1007/s10120-018-0793-2
|
[31] |
YAO Z, JIN T, MAO B, et al. Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on YOLO-V3 Algorithm[J]. Front Oncol, 2022,12:815951. doi:10.3389/fonc.2022.815951
doi: 10.3389/fonc.2022.815951
|
[32] |
郭宪, 吴应洋, 江艾芮,等. 基于深度学习的人工智能辅助胃镜下实时识别病变及位置模型的建立[J]. 局解手术学杂志,2024,33(10):849-854.
|
[33] |
KIM B S, KIM B, CHO M, et al. Enhanced multi-class pathology lesion detection in gastric neoplasms using deep learning-based approach and validation[J]. Sci Rep, 2024,14(1):11527. doi:10.1038/s41598-024-62494-1
doi: 10.1038/s41598-024-62494-1
|
[34] |
金涛, 姚镇东, 毛伯能,等. 人工智能YOLO-V8算法构建早期胃癌图像检测系统的临床意义[J]. 临床肿瘤学杂志,2025,30(3):261-267.
|
[35] |
JIN J, ZHANG Q, DONG B, et al. Automatic detection of early gastric cancer in endoscopy based on Mask region-based convolutional neural networks (Mask R-CNN)(with video)[J]. Front Oncol, 2022,12:927868. doi:10.3389/fonc.2022.927868
doi: 10.3389/fonc.2022.927868
|
[36] |
ZHANG K, WANG H, CHENG Y, et al. Early gastric cancer detection and lesion segmentation based on deep learning and gastroscopic images[J]. Sci Rep, 2024,14(1):7847. doi:10.1038/s41598-024-58361-8
doi: 10.1038/s41598-024-58361-8
|
[37] |
姚敏佳,宋文爱,孙雪,等.InstantMesh:早期胃癌图像三维重建方法研究[J/OL].计算机与现代化,1-9(2025-04-14)[2025-04-16]..
|
[38] |
TERAMOTO A, SHIBATA T, YAMADA H, et al. Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images[J]. Diagnostics (Basel), 2022,12(8):1996. doi:10.3390/diagnostics12081996
doi: 10.3390/diagnostics12081996
|
[39] |
GOTO A, KUBOTA N, NISHIKAWA J, et al. Cooperation between artificial intelligence and endoscopists for diagnosing invasion depth of early gastric cancer[J]. Gastric Cancer, 2023,26(1):116-122. doi:10.1007/s10120-022-01330-9
doi: 10.1007/s10120-022-01330-9
|
[40] |
KIM J H, OH S I, HAN S Y, et al. An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer[J]. Cancers (Basel), 2022,14(23):6000. doi:10.3390/cancers14236000
doi: 10.3390/cancers14236000
|
[41] |
CHEN T H, KUO C F, LEE C, et al. Artificial Intelligence Model for a Distinction between Early-Stage Gastric Cancer Invasive Depth T1a and T1b[J]. J Cancer, 2024,15(10):3085-3094. doi:10.7150/jca.94772
doi: 10.7150/jca.94772
|
[42] |
YEO M K, PARK J H, KANG S H, et al. The long-term outcome and risk factors of histologic discrepancy between forceps biopsies and endoscopic resections in early gastric cancer: An observational study[J]. Medicine (Baltimore), 2024,103(23):e38451. doi:10.1097/md.0000000000038451
doi: 10.1097/md.0000000000038451
|
[43] |
WU L, WANG J, HE X, et al. Deep learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status (with videos)[J]. Gastrointest Endosc, 2022,95(1):92-104.e3. doi:10.1016/j.gie.2021.06.033
doi: 10.1016/j.gie.2021.06.033
|
[44] |
丁平安, 杨沛刚, 田园,等. 胃癌伴左锁骨上淋巴结转移患者的临床病理特征及预后[J]. 实用医学杂志,2021,37(13):1695-1700.
|
[45] |
LEE S, JEON J, PARK J, et al. Correction: An artificial intelligence system for comprehensive pathologic outcome prediction in early gastric cancer through endoscopic image analysis (with video)[J]. Gastric Cancer, 2024,27(6):1351. doi:10.1007/s10120-024-01549-8
doi: 10.1007/s10120-024-01549-8
|