实用医学杂志 ›› 2025, Vol. 41 ›› Issue (14): 2160-2166.doi: 10.3969/j.issn.1006-5725.2025.14.006

• 临床新进展 • 上一篇    

深度学习在早期胃癌内镜图像诊断中的研究进展

张倩,曹云太(),王志洁,周伯琪   

  1. 青海大学附属医院医学影像中心 (青海 西宁 810000 )
  • 收稿日期:2025-04-21 出版日期:2025-07-25 发布日期:2025-07-29
  • 通讯作者: 曹云太 E-mail:caoyt18@lzu.edu.cn
  • 作者简介:曹云太,医学博士,副主任医师,副教授,博士研究生导师,青海大学附属医院医务部副主任,青海省昆仑英才·高端创新创业拔尖人才,中国科学院“西部之光”青年学者。擅长腹部及心血管影像诊断;科研方向:腹部影像学,医学大数据及人工智能;先后在清华大学、北京协和医学院、中山大学肿瘤防治中心进修学习。学术任职及荣誉:中国医师协会放射医师分会继续教育组委员,中国民族卫生协会放射学分会科学研究组/青年委员,中国康复医学会医学影像与康复专委会智能影像与康复学组委员,中国生物工程学会生物医药大数据专委会委员,青海省医学会放射学分会委员,青海省医师协会放射学分会委员,青海省抗癌协会放射学分会委员,iRADIOLOGY《融合影像学(英文)》青年编委。主持国家自然科学基金项目1项,主持省市级科研项目4项。获甘肃省科技进步奖一等奖1项。以第一作者或通信作者发表SCI论文及中文核心期刊论文30余篇,北美放射学会(RSNA)录用10余篇、国际磁共振大会(ISMAR)录用3篇、世界抗癌大会(WCC)论文1篇,中华医学会放射学分会录用10余篇。
  • 基金资助:
    医学影像中心国家级临床重点专科项目(202490)

Advances in deep learning for endoscopic image⁃based diagnosis of early gastric cancer

Qian ZHANG,Yuntai CAO(),Zhijie WANG,Boqi. ZHOU   

  1. Department of Medical Imaging,Affiliated Hospital of Qinghai University,Xining 810000,Qinghai,China
  • Received:2025-04-21 Online:2025-07-25 Published:2025-07-29
  • Contact: Yuntai CAO E-mail:caoyt18@lzu.edu.cn

摘要:

胃癌作为全球高发恶性肿瘤,因临床症状隐匿性导致多数患者在确诊时已进展至中晚期,严重影响治疗效果与生存质量。早期胃癌的精准筛查与病理特征解析是制定个体化治疗方案的核心环节。内镜技术虽作为胃癌早期筛查的金标准,但其诊断准确性高度依赖于操作者的经验和技术水平,目前在人工智能技术赋能下正实现诊疗规范式的革新。基于深度学习的计算机视觉系统可高效识别早期胃癌迹象,其不仅提升病灶辨识灵敏度,更能实现早期胃癌关键病理特征的智能评估,为临床决策提供可视化诊疗依据。该文旨在梳理深度学习技术在早期胃癌内镜图像分析中的应用进展并探讨其临床应用价值。

关键词: 早期胃癌, 深度学习, 内镜图像

Abstract:

Gastric carcinoma (GC), a highly prevalent malignant tumor globally, often progresses to advanced stages by the time of diagnosis due to its insidious clinical presentation, thereby significantly reducing therapeutic effectiveness and patient quality of life. Accurate screening and histopathological characterization of early gastric cancer (EGC) are essential for developing individualized treatment approaches. Although endoscopic techniques remain the gold standard for early GC detection, their diagnostic accuracy is largely dependent on the operator′s skill, a challenge that current artificial intelligence (AI)-assisted innovations aim to address by standardizing diagnostic procedures. Deep learning (DL)-based computer vision systems have demonstrated remarkable performance in identifying subtle EGC features, not only improving lesion detection sensitivity but also enabling automated assessment of key pathological indicators. These technological advances offer objective, visualized diagnostic support for clinical decision-making. This review provides a systematic overview of recent developments in DL applications for endoscopic image analysis of EGC and evaluates their potential for clinical integration.

Key words: early gastric cancer, deep learning, endoscopic images

中图分类号: