1 |
SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315(8):801-810. doi:10.1001/jama.2016.0287
doi: 10.1001/jama.2016.0287
|
2 |
WANG Z, KONG L, TAN S, et al. Zhx2 Accelerates Sepsis by Promoting Macrophage Glycolysis via Pfkfb3[J]. J Immunol, 2020, 204(8):2232-2241. doi:10.4049/jimmunol.1901246
doi: 10.4049/jimmunol.1901246
|
3 |
蒋龙元. 免疫紊乱在脓毒症中的作用[J]. 实用医学杂志, 2021,37(6):701-704. doi:10.3969/j.issn.1006-5725.2021.06.001
doi: 10.3969/j.issn.1006-5725.2021.06.001
|
4 |
CHEN X, LIU Y, GAO Y, et al. The roles of macrophage polarization in the host immune response to sepsis[J]. Int Immunopharmacol, 2021, 96:107791. doi:10.1016/j.intimp.2021.107791
doi: 10.1016/j.intimp.2021.107791
|
5 |
MINHAS P S, LATIF-HERNANDEZ A, MCREYNOLDS M R, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing[J]. Nature, 2021,590(7844):122-128. doi:10.1038/s41586-020-03160-0
doi: 10.1038/s41586-020-03160-0
|
6 |
CHANDEL N S. Glycolysis[J]. Cold Spring Harb Perspect Biol, 2021,13(5):a040535. doi:10.1101/cshperspect.a040535
doi: 10.1101/cshperspect.a040535
|
7 |
CHANG Y C, KIM C H. Molecular Research of Glycolysis[J]. Int J Mol Sci, 2022,23(9):5052. doi:10.3390/ijms23095052
doi: 10.3390/ijms23095052
|
8 |
FREEMERMAN A J, ZHAO L, PINGILI A K, et al. Myeloid Slc2a1-Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1[J]. J Immunol, 2019, 202(4):1265-1286. doi:10.4049/jimmunol.1800002
doi: 10.4049/jimmunol.1800002
|
9 |
GAUTHIER T, CHEN W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections[J]. Front Immunol,2022,13:780839. doi:10.3389/fimmu.2022.780839
doi: 10.3389/fimmu.2022.780839
|
10 |
KIERANS S J, TAYLOR C T. Regulation of glycolysis by the hypoxia‐inducible factor (HIF): Implications for cellular physiology[J]. J Physiol, 2021, 599(1):23-37. doi:10.1113/jp280572
doi: 10.1113/jp280572
|
11 |
ROQUILLY A, MCWILLIAM H E G, JACQUELINE C, et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections[J]. Immunity, 2017, 47(1):135-147.e5. doi:10.1016/j.immuni.2017.06.021
doi: 10.1016/j.immuni.2017.06.021
|
12 |
FREEMERMAN A J, JOHNSON A R, SACKS G N, et al. Metabolic Reprogramming of Macrophages[J]. J Biol Chem, 2014, 289(11):7884-7896. doi:10.1074/jbc.m113.522037
doi: 10.1074/jbc.m113.522037
|
13 |
吴长江. 脓毒症的病理生理机制及其诊疗研究进展[J]. 智慧健康, 2022,8(8):29-36.
|
14 |
ZINKERNAGEL A S, JOHNSON R S, NIZET V. Hypoxia inducible factor (HIF) function in innate immunity and infection[J]. J Mol Med, 2007, 85(12):1339-1346. doi:10.1007/s00109-007-0282-2
doi: 10.1007/s00109-007-0282-2
|
15 |
CHEN X, LIU Y, GAO Y, et al. The roles of macrophage polarization in the host immune response to sepsis[J]. Int Immunopharmacol, 2021, 96:107791. doi:10.1016/j.intimp.2021.107791
doi: 10.1016/j.intimp.2021.107791
|
16 |
DENG H, WU L, LIU M, et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages[J]. Shock, 2020, 54(6):828-843. doi:10.1097/shk.0000000000001549
doi: 10.1097/shk.0000000000001549
|
17 |
DENG H, WU L, LIU M, et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages[J]. Shock, 2020, 54(6):828-843. doi:10.1097/shk.0000000000001549
doi: 10.1097/shk.0000000000001549
|
18 |
IWASAKI A, MEDZHITOV R. Control of adaptive immunity by the innate immune system[J]. Nat Immunol, 2015, 16(4):343-353. doi:10.1038/ni.3123
doi: 10.1038/ni.3123
|
19 |
YANG L, XIE M, YANG M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis[J]. Nat Commun, 2014, 5:4436. doi:10.1038/ncomms5436
doi: 10.1038/ncomms5436
|
20 |
YUAN Y, FAN G, LIU Y, et al. Correction to: The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis[J]. Cell Mol Immunol, 2022,19(5):650. doi:10.1038/s41423-022-00839-4
doi: 10.1038/s41423-022-00839-4
|
21 |
REINFELD B I, MADDEN M Z, WOLF M M, et al. Cell Programmed Nutrient Partitioning in the Tumor Microenvironment[J]. Nature,2021, 593(7858):282-288. doi:10.1038/s41586-021-03442-1
doi: 10.1038/s41586-021-03442-1
|
22 |
NOLT B, TU F, WANG X, et al. Lactate and Immunosuppression in Sepsis[J]. Shock, 2018, 49(2):120-125. doi:10.1097/shk.0000000000000958
doi: 10.1097/shk.0000000000000958
|
23 |
NEAGU M. Metabolic Traits in Cutaneous Melanoma[J]. Front Oncol, 2020,10:851. doi:10.3389/fonc.2020.00851
doi: 10.3389/fonc.2020.00851
|
24 |
HAYES C, DONOHOE C L, DAVERN M, et al. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J]. Cancer Lett, 2021, 500:75-86. doi:10.1016/j.canlet.2020.12.021
doi: 10.1016/j.canlet.2020.12.021
|
25 |
SCHOUWENBURG M G, SUIJKERBUIJK K P M, KOORNSTRA R H T, et al. Switching to Immune Checkpoint Inhibitors upon Response to Targeted Therapy; The Road to Long-Term Survival in Advanced Melanoma Patients with Highly Elevated Serum LDH? [J].Cancers, 2019, 11(12):1940. doi:10.3390/cancers11121940
doi: 10.3390/cancers11121940
|
26 |
ZHANG Z, LI Y, YAN X, et al. Pretreatment lactate dehydrogenase may predict outcome of advanced non small‐cell lung cancer patients treated with immune checkpoint inhibitors: A meta‐analysis[J]. Cancer Med, 2019, 8(4):1467-1473. doi:10.1002/cam4.2024
doi: 10.1002/cam4.2024
|
27 |
VAUPEL P, MULTHOFF G. Fatal Alliance of Hypoxia-/HIF-1α- Driven Microenvironmental Traits Promoting Cancer Progression[J]. Adv Exp Med Biol, 2020, 1232:169-176. doi:10.1007/978-3-030-34461-0_21
doi: 10.1007/978-3-030-34461-0_21
|
28 |
LEMBERG K M, GORI, S S, TSUKAMOTO T, et al. Clinical development of metabolic inhibitors for oncology[J]. J Clin Invest,2022,132(11):e151895. doi:10.1172/jci148550
doi: 10.1172/jci148550
|
29 |
CHELAKKOT C, CHELAKKOT V S, SHIN Y, et al. Modulating Glycolysis to Improve Cancer Therapy[J]. Int J Mol Sci, 2023,24(3):2606. doi:10.3390/ijms24032606
doi: 10.3390/ijms24032606
|
30 |
BLOUIN C C, LPAGÉ E, SOUCY G M, et al. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha[J]. Blood, 2004, 103(3):1124-1130. doi:10.1182/blood-2003-07-2427
doi: 10.1182/blood-2003-07-2427
|
31 |
MAGER C E, MORMOL J M, SHELTON E D, et al. p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis[J]. J Biol Chem, 2023, 299(4):103043. doi:10.1016/j.jbc.2023.103043
doi: 10.1016/j.jbc.2023.103043
|
32 |
HE Q, YIN J, ZOU B, et al. WIN55212-2 alleviates acute lung injury by inhibiting macrophage glycolysis through the miR-29b-3p/FOXO3/PFKFB3 axis[J]. Mol Immunol, 2022, 149:119-128. doi:10.1016/j.molimm.2022.06.005
doi: 10.1016/j.molimm.2022.06.005
|
33 |
PALSSON-MCDERMOTT E M, CURTIS A M, GOEL G, et al. Pyruvate Kinase M2 Regulates Hif-1α Activity and IL-1β Induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21(2):65-80. doi:10.1016/j.cmet.2014.12.005
doi: 10.1016/j.cmet.2014.12.005
|
34 |
PEI L, LE Y, CHEN H, et al. Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis[J]. Fitoterapia, 2021, 152:104922. doi:10.1016/j.fitote.2021.104922
doi: 10.1016/j.fitote.2021.104922
|
35 |
DING H, WANG J J, ZHANG X Y, et al. Lycium barbarum Polysaccharide Antagonizes LPS-Induced Inflammation by Altering the Glycolysis and Differentiation of Macrophages by Triggering the Degradation of PKM2[J]. Biol Pharm Bull, 2021, 44(3):379-388. doi:10.1248/bpb.b20-00752
doi: 10.1248/bpb.b20-00752
|
36 |
PAN L, HU L, ZHANG L, et al. Deoxyelephantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2[J]. Int Immunopharmacol, 2020, 79:106048.
|
37 |
CRAMER T, YAMANISHI Y, CLAUSEN B E, et al. HIF-1α is essential for myeloid cell-mediated inflammation[J]. Cell, 2003, 112(5):645-657. doi:10.1016/s0092-8674(03)00154-5
doi: 10.1016/s0092-8674(03)00154-5
|
38 |
SHIN M K, DRAGER L F, YAO Q, et al. Metabolic Consequences of High-Fat Diet Are Attenuated by Suppression of HIF-1α[J]. PLoS One, 2012,7(10):e46562. doi:10.1371/journal.pone.0046562
doi: 10.1371/journal.pone.0046562
|