1 |
ROSE C F, AMODIO P, BAJAJ J S, et al. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy [J]. J Hepatol, 2020, 73(6): 1526-1547. doi:10.1016/j.jhep.2020.07.013
doi: 10.1016/j.jhep.2020.07.013
|
2 |
WIJDICKS E F. Hepatic Encephalopathy [J]. N Engl J Med, 2016, 375(17): 1660-1670. doi:10.1056/nejmra1600561
doi: 10.1056/nejmra1600561
|
3 |
ELSAID M I, JOHN T, LI Y, et al. The Health Care Burden of Hepatic Encephalopathy [J]. Clin Liver Dis, 2020, 24(2): 263-275. doi:10.1016/j.cld.2020.01.006
doi: 10.1016/j.cld.2020.01.006
|
4 |
DEBRAY T P A, COLLINS G S, RILEY R D, et al. Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration [J]. BMJ, 2023, 380: e071058. doi:10.1136/bmj-2022-071058
doi: 10.1136/bmj-2022-071058
|
5 |
YANG H, LI X, CAO H, et al. Using machine learning methods to predict hepatic encephalopathy in cirrhotic patients with unbalanced data [J]. Comput Methods Programs Biomed, 2021, 211: 106420. doi:10.1016/j.cmpb.2021.106420
doi: 10.1016/j.cmpb.2021.106420
|
6 |
贾学友,晋晓丽,戴进前. 基于Cox风险回归预测模型判断HBV-ACLF短期预后的价值[J]. 中西医结合肝病杂志, 2022(4): 32.
|
7 |
LE BERRE C, SANDBORN W J, ARIDHI S, et al. Application of Artificial Intelligence to Gastroenterology and Hepatology [J]. Gastroenterology, 2020, 158(1): 76-94.e2. doi:10.1053/j.gastro.2019.08.058
doi: 10.1053/j.gastro.2019.08.058
|
8 |
林建辉,陈丽霞,蓝丽琴,等. 乙型肝炎相关慢加急性肝衰竭患者住院新发显性肝性脑病风险的预测模型构建[J]. 解放军医学杂志, 2022,47(12):1232-1240.
|
9 |
HU C, JIANG N, ZHENG J, et al. Liver volume based prediction model for patients with hepatitis B virus-related acute-on-chronic liver failure [J]. J Hepatobiliary Pancreat Sci, 2022, 29(12): 1253-1263. doi:10.1002/jhbp.1112
doi: 10.1002/jhbp.1112
|
10 |
ACHARYA C, SHAW J, DUONG N, et al. QuickStroop, a Shortened Version of EncephalApp, Detects Covert Hepatic Encephalopathy With Similar Accuracy Within One Minute [J]. Clin Gastroenterol Hepatol, 2023, 21(1): 136-142. doi:10.1016/j.cgh.2021.12.047
doi: 10.1016/j.cgh.2021.12.047
|
11 |
YU X, LU Y, SUN S, et al. Clinical Prediction Models for Hepatitis B Virus-related Acute-on-chronic Liver Failure: A Technical Report [J]. J Clin Transl Hepatol, 2021, 9(6): 838-849.
|
12 |
GUO L W, LYU Z Y, MENG Q C, et al. A risk prediction model for selecting high-risk population for computed tomography lung cancer screening in China [J]. Lung Cancer, 2022, 163: 27-34. doi:10.1016/j.lungcan.2021.11.015
doi: 10.1016/j.lungcan.2021.11.015
|
13 |
李应龙,庞桦进,何晓峰. 经颈静脉肝内门腔静脉分流术后早期肝性脑病列线图的建立和验证[J]. 实用医学杂志,2020,36(7):963-968. doi:10.3969/j.issn.1006-5725.2020.07.026
doi: 10.3969/j.issn.1006-5725.2020.07.026
|
14 |
American Association for the study of Liver Diseases, European Association for the study of the Liver. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases [J]. J Hepatol, 2014, 61(3): 642-659. doi:10.1016/j.jhep.2014.05.042
doi: 10.1016/j.jhep.2014.05.042
|
15 |
ROMERO-GÓMEZ M, CÓRDOBA J, JOVER R, et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy [J]. Hepatology, 2007, 45(4): 879-885. doi:10.1002/hep.21586
doi: 10.1002/hep.21586
|
16 |
胡小鹏,高建. 国际标准化比值和终末期肝病模型评分对并发肝性脑病的肝硬化患者短期预后的预测价值[J]. 第三军医大学学报, 2019, 41(14):7.
|
17 |
TAKIKAWA Y, ENDO R, SUZUKI K, et al. Prediction of hepatic encephalopathy development in patients with severe acute hepatitis [J]. Dig Dis Sci, 2006, 51(2): 359-364. doi:10.1007/s10620-006-3138-7
doi: 10.1007/s10620-006-3138-7
|
18 |
LABENZ C, TOENGES G, HUBER Y, et al. Raised serum Interleukin-6 identifies patients with liver cirrhosis at high risk for overt hepatic encephalopathy [J]. Aliment Pharmacol Ther, 2019, 50(10): 1112-1119. doi:10.1111/apt.15515
doi: 10.1111/apt.15515
|
19 |
TAPPER E B, PARIKH N D, SENGUPTA N, et al. A risk score to predict the development of hepatic encephalopathy in a population-based cohort of patients with cirrhosis [J]. Hepatology, 2018, 68(4): 1498-1507. doi:10.1002/hep.29628
doi: 10.1002/hep.29628
|
20 |
AHN J C, CONNELL A, SIMONETTO D A, et al. Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases [J]. Hepatology, 2021, 73(6): 2546-2563. doi:10.1002/hep.31603
doi: 10.1002/hep.31603
|
21 |
李欣欣. 基于代价敏感性随机森林与支持向量机的肝硬化并发肝性脑病风险预测模型研究[D]. 太原:山西医科大学,2018.
|
22 |
王旭春,翟梦梦,任浩,等. 基于重采样和Voting异质集成的分类模型在肝硬化并发肝性脑病风险预测中的探索性研究[J].中国卫生统计, 2022,39(4):039.
|
23 |
胡珉,陈新. 决策树模型联合Logistic回归法分析肝性脑病结局的影响因素[J]. 现代医学,2016,44(9):1199-1203.
|
24 |
刘宝荣,方建凯,林明华,等. 应用人工神经网络评估乙型肝炎慢加急性肝衰竭发生肝性脑病的危险因素[J]. 肝脏,2017,22(12):1085-1089,1093. doi:10.3969/j.issn.1008-1704.2017.12.006
doi: 10.3969/j.issn.1008-1704.2017.12.006
|
25 |
程璠,曹红艳,武希润,等. 肝性脑病诱发因素的潜在类别模型与高危人群筛选[J]. 慢性病学杂志,2018,19(1):4-7+11.
|
26 |
谈军涛,许晓梅,何雨芯,等. 基于机器学习算法的肝硬化相关肝性脑病预测模型的构建[J]. 解放军医学杂志, 2021, 46(4):7. doi:10.11855/j.issn.0577-7402.2021.04.06
doi: 10.11855/j.issn.0577-7402.2021.04.06
|
27 |
王旭春,宋伟梅,翟梦梦,等. 基于ElasticNet和贝叶斯网络模型的肝硬化并发肝性脑病相关因素分析[J]. 现代预防医学, 2021, 48(9):5.
|
28 |
VON ESCHENBACH W J. Transparency and the black box problem: Why we do not trust AI [J]. Philosophy & Technology, 2021, 34(4): 1607-1622. doi:10.1007/s13347-021-00477-0
doi: 10.1007/s13347-021-00477-0
|
29 |
NAZAR M, ALAM M M, YAFI E, et al. A systematic review of human-computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques [J]. IEEE Access, 2021, 9: 153316-153348. doi:10.1109/access.2021.3127881
doi: 10.1109/access.2021.3127881
|
30 |
NAZIR S, DICKSON D M, AKRAM M U. Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks [J]. Comput Biol Med, 2023,156: 106668. doi:10.1016/j.compbiomed.2023.106668
doi: 10.1016/j.compbiomed.2023.106668
|
31 |
LAL A, DANG J, NABZDYK C, et al. Regulatory oversight and ethical concerns surrounding software as medical device (SaMD) and digital twin technology in healthcare [J]. Ann Transl Med, 2022, 10(18):950. doi:10.21037/atm-22-4203
doi: 10.21037/atm-22-4203
|
32 |
GIL-GÓMEZ A, AMPUERO J, ROJAS Á, et al. Development and Validation of a Clinical-Genetic Risk Score to Predict Hepatic Encephalopathy in Patients With Liver Cirrhosis[J]. Am J Gastroenterol, 2021, 116(6): 1238-1247. doi:10.14309/ajg.0000000000001164
doi: 10.14309/ajg.0000000000001164
|
33 |
COLLINS G S, REITSMA J B, ALTMAN D G, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) the TRIPOD statement [J]. Circulation, 2015, 131(2): 211-219. doi:10.1161/circulationaha.114.014508
doi: 10.1161/circulationaha.114.014508
|
34 |
CONNELL A, BLACK G, MONTGOMERY H, et al. Implementation of a Digitally Enabled Care Pathway (Part 2): Qualitative Analysis of Experiences of Health Care Professionals [J]. J Med Internet Res, 2019, 21(7): e13143. doi:10.2196/13143
doi: 10.2196/13143
|
35 |
WOLFF R F, MOONS K G M, RILEY R D, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies [J]. Ann Intern Med, 2019, 170(1): 51-58. doi:10.7326/m18-1376
doi: 10.7326/m18-1376
|