实用医学杂志 ›› 2024, Vol. 40 ›› Issue (3): 289-294.doi: 10.3969/j.issn.1006-5725.2024.03.002

• 临床新进展 • 上一篇    下一篇

人工智能在肝性脑病风险预测模型中的应用进展

黄良江1,毛德文2,郑景辉4,王明刚3,姚春1()   

  1. 1.广西中医药大学 (南宁 530200 )
    2.广西中医药大学第一附属医院 肝病科 (南宁 530023 )
    3.广西中医药大学第一附属医院 科研部 (南宁 530023 )
    4.广西中医药大学附属瑞康医院 (南宁 530023 )
  • 收稿日期:2023-09-26 出版日期:2024-02-10 发布日期:2024-02-22
  • 通讯作者: 姚春 E-mail:yaoc@gxtcmu.edu.cn
  • 作者简介:姚春,二级教授,博士研究生导师,第二届广西壮族自治区桂派中医大师,全国“三八”红旗手。现任广西中医药大学校长。擅长治疗各类神经系统疾病、消化系统疾病以及内科疑难杂病。作为项目负责人承担了广西科技重大专项、广西首个中药民族药产业专项揭榜挂帅项目、2023年度国家自然科学基金区域创新发展联合基金重点支持项目等省部级以上科研项目10余项。荣获广西科学技术进步奖一等奖1 项、二等奖1项、三等奖3项,广西社会科学优秀成果奖二等奖1项。主编或参编专著(教材)3部。在专业期刊上发表论文90余篇,其中SCI收录14篇,拥有发明及实用新型专利3项,获得授权计算机软件著作权2项。
  • 基金资助:
    广西重点研发计划项目(编号:桂科AB22035076);国家自然科学基金地区基金(82260899);广西研究生教育创新计划项目(YCSW2022343)

Application of artificial intelligence in HE risk prediction modelling and research advances

Liangjiang HUANG1,Dewen MAO2,Jinghui ZHENG4,Minggang WANG3,Chun YAO1()   

  1. Guangxi University of Traditional Chinese Medicine,Nanning 530200,China
  • Received:2023-09-26 Online:2024-02-10 Published:2024-02-22
  • Contact: Chun YAO E-mail:yaoc@gxtcmu.edu.cn

摘要:

肝性脑病是由肝功能不全引起的中枢神经系统功能紊乱的临床综合征。它严重影响患者的生活质量,并可能导致死亡。准确预测肝性脑病的发生风险对于早期干预和治疗至关重要。为了提前识别患者的肝性脑病风险,许多研究都在致力于努力开发工具及方法,以尽早识别肝性脑病的风险,从而制定预防和早期管理策略。目前大多数传统的肝性脑病风险预测模型通过分析临床数据和生化指标等因素,来评估患者发生肝性脑病的概率,然而其准确性、灵敏性和阳性预测值都不高。人工智能在临床预测模型的应用是一个非常热门和有前景的领域,它可以利用大量的数据和复杂的算法来提高诊断和预后的准确性和效率。到目前为止,利用人工智能技术预测肝性脑病的研究还很少。因此,本文综述了肝性脑病风险预测模型的研究进展,探讨人工智能在肝性脑病风险预测模型中的应用前景,并指出人工智能在肝性脑病风险预测模型研究中的挑战及未来研究方向,以促进肝性脑病风险预测模型的发展和临床应用。

关键词: 肝性脑病, 风险预测模型, 人工智能技术, 机器学习

Abstract:

Hepatic encephalopathy is a clinical syndrome of central nervous system dysfunction caused by liver insufficiency. It severely affects the quality of life of patients and may lead to death. Accurate prediction of the risk of developing hepatic encephalopathy is crucial for early intervention and treatment. In order to identify the risk of hepatic encephalopathy in patients in advance, many studies have been devoted to efforts to develop tools and methods to identify the risk of hepatic encephalopathy as early as possible, so as to develop preventive and early management strategies. Most conventional hepatic encephalopathy risk prediction models currently assess the probability of a patient developing hepatic encephalopathy by analysing factors such as clinical data and biochemical indicators, however, their accuracy, sensitivity and positive predictive value are not high. The application of artificial intelligence to clinical predictive modelling is a very hot and promising area, which can use large amounts of data and complex algorithms to improve the accuracy and efficiency of diagnosis and prognosis. To date, there have been few studies using AI techniques to predict hepatic encephalopathy. Therefore, this paper reviews the research progress of hepatic encephalopathy risk prediction models, and also discusses the prospect of AI application in hepatic encephalopathy risk prediction models. It also points out the challenges and future research directions of AI in HE risk prediction model research in order to promote the development and clinical application of hepatic encephalopathy risk prediction models.

Key words: hepatic encephalopathy, risk prediction model, artificial intelligence technology, machine learning

中图分类号: