1 |
SOROKIN I, MAMOULAKIS C, MIYAZAWA K, et al. Epidemiology of stone disease across the world[J]. World J Urol, 2017, 35(9): 1301-1320. doi:10.1007/s00345-017-2008-6
doi: 10.1007/s00345-017-2008-6
|
2 |
WALTER K. Kidney Stones[J]. JAMA, 2022, 328(9): 898. doi:10.1001/jama.2022.12609
doi: 10.1001/jama.2022.12609
|
3 |
吕昂,范新,苏倩,余陈欢,等. 车前草醇提物治疗肾草酸钙结石的作用及其机制[J]. 中国临床药理学与治疗学, 2016, 21(11): 1239-1245.
|
4 |
王演, 潘铁军, 刘振宇, 等. 肠道微生物网络在高草酸诱导大鼠肾损伤中的保护作用[J]. 实用医学杂志, 2024, 40(13): 1771-1777.
|
5 |
ALFORD A, FURROW E, BOROFSKY M, et al. Animal models of naturally occurring stone disease[J]. Nat Rev Urol, 2020, 17(12): 691-705. doi:10.1038/s41585-020-00387-4
doi: 10.1038/s41585-020-00387-4
|
6 |
SUN Y, SUN H, ZHANG Z, et al. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients[J]. Biomed Pharmacother, 2024, 179: 117333. doi:10.1016/j.biopha.2024.117333
doi: 10.1016/j.biopha.2024.117333
|
7 |
WANG Z, ZHANG Y, ZHANG J, et al. Recent advances on the mechanisms of kidney stone formation (Review)[J]. Int J Mol Med, 2021, 48(2): 149. doi:10.3892/ijmm.2021.4982
doi: 10.3892/ijmm.2021.4982
|
8 |
FALONY G. Beyond Oxalobacter: The gut microbiota and kidney stone formation[J]. Gut, 2018, 67(12): 2078-2079. doi:10.1136/gutjnl-2018-316639
doi: 10.1136/gutjnl-2018-316639
|
9 |
CAPOLONGO G, FERRARO P M, UNWIN R. Inflammation and kidney stones: Cause and effect?[J]. Curr Opin Urol, 2023, 33(2): 129-135. doi:10.1097/mou.0000000000001066
doi: 10.1097/mou.0000000000001066
|
10 |
YUAN T, XIA Y, LI B, et al. Gut microbiota in patients with kidney stones: A systematic review and meta-analysis[J]. BMC Microbiol, 2023, 23(1): 143. doi:10.1186/s12866-023-02891-0
doi: 10.1186/s12866-023-02891-0
|
11 |
TIAN L, LIU Y, XU X, et al. Lactiplantibacillus plantarum J-15 reduced calcium oxalate kidney stones by regulating intestinal microbiota, metabolism, and inflammation in rats[J]. FASEB J, 2022, 36(6): e22340. doi:10.1096/fj.202101972rr
doi: 10.1096/fj.202101972rr
|
12 |
XU M, QIN Y, XIA Y, et al. Screening of oxalate-degrading probiotics and preventive effect of Lactiplantibacillus plantarum AR1089 on kidney stones[J]. Food Funct, 2024, 15(19): 10163-10178. doi:10.1039/d4fo03133d
doi: 10.1039/d4fo03133d
|
13 |
纪媛媛, 马欣莹, 步雨珊, 等. 降解草酸盐益生菌的筛选及其体内功效评价[J]. 食品与发酵工业, 2022, 48(13): 78-83.
|
14 |
WIGNER P, BIJAK M, SALUK-BIJAK J. Probiotics in the Prevention of the Calcium Oxalate Urolithiasis[J]. Cells, 2022, 11(2): 284. doi:10.3390/cells11020284
doi: 10.3390/cells11020284
|
15 |
WEI Z, CUI Y, TIAN L, et al. Probiotic Lactiplantibacillus plantarum N-1 could prevent ethylene glycol-induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function[J]. FASEB J, 2021, 35(11): e21937. doi:10.1096/fj.202100887rr
doi: 10.1096/fj.202100887rr
|
16 |
ZHU H, CAO C, WU Z, et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease[J]. Cell Metab, 2021, 33(10): 1926-1942.e8. doi:10.1016/j.cmet.2021.06.014
doi: 10.1016/j.cmet.2021.06.014
|
17 |
WANG L, CHEN Z, LIU Y, et al. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway[J]. Drug Des Devel Ther, 2018, 12: 1293-1301. doi:10.2147/dddt.s164927
doi: 10.2147/dddt.s164927
|
18 |
WIGNER P, GRĘBOWSKI R, BIJAK M, et al. The Molecular Aspect of Nephrolithiasis Development[J]. Cells, 2021, 10(8): 1926. doi:10.3390/cells10081926
doi: 10.3390/cells10081926
|
19 |
PENG Q, LI C, ZHAO Y, et al. Protective Effect of Degraded Porphyra yezoensis Polysaccharides on the Oxidative Damage of Renal Epithelial Cells and on the Adhesion and Endocytosis of Nanocalcium Oxalate Crystals[J]. Oxid Med Cell Longev, 2021, 2021: 6463281. doi:10.1155/2021/6463281
doi: 10.1155/2021/6463281
|
20 |
WANG G, HAO M, LIU Q, et al. Protective effect of recombinant Lactobacillus plantarum against H(2)O(2)-induced oxidative stress in HUVEC cells[J]. J Zhejiang Univ Sci B, 2021, 22(5): 348-365. doi:10.1631/jzus.2000441
doi: 10.1631/jzus.2000441
|
21 |
JIANG K, SUN Y, CHEN X. Mechanism Underlying Acupuncture Therapy in Spinal Cord Injury: A Narrative Overview of Preclinical Studies[J]. Front Pharmacol, 2022, 13: 875103. doi:10.3389/fphar.2022.875103
doi: 10.3389/fphar.2022.875103
|
22 |
LIU Y, SUN Y, KANG J, et al. Role of ROS-Induced NLRP3 Inflammasome Activation in the Formation of Calcium Oxalate Nephrolithiasis[J]. Front Immunol, 2022, 13: 818625. doi:10.3389/fimmu.2022.818625
doi: 10.3389/fimmu.2022.818625
|
23 |
WANG Q, ZHANG J, CHEN X, et al. Renal tubular epithelial cells treated with calcium oxalate up-regulate S100A8 and S100A9 expression in M1-polarized macrophages via interleukin 6[J]. Iran J Basic Med Sci, 2023, 26(5): 603-608.
|
24 |
LIU Y, YANG J, WENG D, et al. A1CF Binding to the p65 Interaction Site on NKRF Decreased IFN-β Expression and p65 Phosphorylation (Ser536) in Renal Carcinoma Cells[J]. Int J Mol Sci, 2024, 25(7): 3576. doi:10.3390/ijms25073576
doi: 10.3390/ijms25073576
|
25 |
JIA Q, HUANG Z, WANG G, et al. Osteopontin: An important protein in the formation of kidney stones[J]. Front Pharmacol, 2022, 13: 1036423. doi:10.3389/fphar.2022.1036423
doi: 10.3389/fphar.2022.1036423
|
26 |
TAGUCHI K, OKADA A, UNNO R, et al. Macrophage Function in Calcium Oxalate Kidney Stone Formation: A Systematic Review of Literature[J]. Front Immunol, 2021, 12: 673690. doi:10.3389/fimmu.2021.673690
doi: 10.3389/fimmu.2021.673690
|
27 |
KHAN S R, CANALES B K, DOMINGUEZ-GUTIERREZ P R. Randall's plaque and calcium oxalate stone formation: Role for immunity and inflammation[J]. Nat Rev Nephrol, 2021, 17(6): 417-433. doi:10.1038/s41581-020-00392-1
doi: 10.1038/s41581-020-00392-1
|
28 |
MEHRA Y, RAJESH N G, VISWANATHAN P. Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats[J]. Probiotics Antimicrob Proteins, 2022, 14(5): 854-872. doi:10.1007/s12602-022-09958-w
doi: 10.1007/s12602-022-09958-w
|