1 |
任鹏. 高血压和糖尿病综合管理研究现状及进展[J]. 医药前沿, 2024, 14(33): 55⁃58.
|
2 |
中国血脂管理指南修订联合专家委员会. 《中国血脂管理指南(基层版2024年)》摘登[J]. 实用心脑肺血管病杂志, 2024, 32(7): 70.
|
3 |
MAQBOOL M, COOPER M E, JANDELEIT-DAHM K. Cardiovascular Disease and Diabetic Kidney Disease[J]. Semin Nephrol, 2018, 38(3): 217⁃232. doi:10.1016/j.semnephrol.2018.02.003
doi: 10.1016/j.semnephrol.2018.02.003
|
4 |
PRETORIUS E. Platelets as Potent Signaling Entities in Type 2 Diabetes Mellitus[J]. Trends Endocrinol Metab, 2019, 30(8): 532⁃545. doi:10.1016/j.tem.2019.05.003
doi: 10.1016/j.tem.2019.05.003
|
5 |
KAYAMA Y, RAAZ U, JAGGER A, et al. Diabetic Cardiovascular Disease Induced by Oxidative Stress[J]. Int J Mol Sci, 2015, 16(10): 25234⁃25263. doi:10.3390/ijms161025234
doi: 10.3390/ijms161025234
|
6 |
张春梅,黄新惠,胡锦秋,等. 莱菔硫烷下调PI3K/Akt信号通路对高糖诱导人血小板凋亡的保护作用[J]. 实用医学杂志, 2024, 40(18): 2530⁃2536.
|
7 |
张华,翟永华. 2型糖尿病患者对饮食治疗认知现状及饮食健康需求调查分析[J]. 中国实用医药, 2024,19(10): 168⁃171.
|
8 |
GU Y, NIU Q, ZHANG Q, et al. Ameliorative Effects of Curcumin on Type 2 Diabetes Mellitus[J]. Molecules, 2024, 29(12):2934. doi:10.3390/molecules29122934
doi: 10.3390/molecules29122934
|
9 |
LU W, KHATIBI S F, KHORSANDI K, et al. An update on molecular mechanisms of curcumin effect on diabetes[J]. J Food Biochem, 2022, 46(10): e14358. doi:10.1111/jfbc.14358
doi: 10.1111/jfbc.14358
|
10 |
ZHANG Z B, LUO D D, XIE J H, et al. Curcumin's Metabolites, Tetrahydrocurcumin and Octahydrocurcumin, Possess Superior Anti-inflammatory Effects in vivo Through Suppression of TAK1-NF-kappaB Pathway[J]. Front Pharmacol, 2018, 9: 1181. doi:10.3389/fphar.2018.01181
doi: 10.3389/fphar.2018.01181
|
11 |
LI W, MA Y, ZHANG C, et al. Tetrahydrocurcumin Downregulates MAPKs/cPLA2 Signaling and Attenuates Platelet Thromboxane A2 Generation, Granule Secretion, and Thrombus Growth[J]. Thromb Haemost, 2022, 122(5): 739⁃754. doi:10.1055/s-0041-1735192
doi: 10.1055/s-0041-1735192
|
12 |
马永洁,李玮琪,张春梅,等. 四氢姜黄素经PI3K/Akt信号通路对人血小板活化和聚集的调控作用[J]. 食品科学, 2022, 43(13): 72⁃79.
|
13 |
牙甫礼, XIN YU,张春梅,等. 姜黄素对H_2O_2诱导血小板凋亡的抑制作用及分子机制[J]. 食品科学, 2021, 42(13): 151⁃157.
|
14 |
李玮琪,马永洁,黄新惠,等. 莱菔硫烷对ox-LDL诱导血小板活化的抑制作用[J]. 南京医科大学学报(自然科学版), 2023, 43(5): 684⁃690.
|
15 |
马永洁,李玮琪,伍春婷,等. 三七总皂苷对ox-LDL诱导血小板凋亡的保护作用及机制研究[J]. 大理大学学报, 2023, 8(2): 1⁃7.
|
16 |
LI W Q, WU C T, ZHOU X Y, et al. Sulforaphane Attenuates CD36-mediated Platelet Hyperreactivity through Modulating cAMP/PKA/NOX2 Signaling in Hyperlipidemic Conditions[J]. Food Sci Hum Wellness, 2024. .
|
17 |
ZHOU X, HUANG X, WU C, et al. Sulforaphane attenuates glycoprotein VI-mediated platelet mitochondrial dysfunction through up-regulating the cAMP/PKA signaling pathway in vitro and in vivo[J]. Food Funct, 2023, 14(8): 3613⁃3629. doi:10.1039/d2fo03958c
doi: 10.1039/d2fo03958c
|
18 |
牙甫礼,施译琳,李卿,等. 辅酶Q10通过调控糖蛋白Ⅵ信号通路抑制血小板聚集和活化[J]. 中国热带医学, 2018, 18(12): 1181⁃1186.
|
19 |
牙甫礼,张春梅,陈彬林,等. 辅酶Q10经蛋白激酶A/胞浆型磷脂酶A2信号通路抑制血小板血栓素A2的生成[J]. 食品科学, 2021,42(9): 130⁃136.
|
20 |
PAUL M, HEMSHEKHAR M, KEMPARAJU K, et al. Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity[J]. Free Radic Biol Med, 2019, 130: 196⁃205. doi:10.1016/j.freeradbiomed.2018.10.453
doi: 10.1016/j.freeradbiomed.2018.10.453
|
21 |
PETERSEN H D, GORMSEN J. Platelet aggregation in diabetes mellitus[J]. Acta Med Scand, 1978,203(1-2): 125⁃130. doi:10.1111/j.0954-6820.1978.tb14842.x
doi: 10.1111/j.0954-6820.1978.tb14842.x
|
22 |
TANG W H, STITHAM J, GLEIM S, et al. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane[J]. J Clin Invest, 2011, 121(11): 4462⁃4476. doi:10.1172/jci59291
doi: 10.1172/jci59291
|
23 |
KANNAN M, AHMAD F, SAXENA R. Platelet activation markers in evaluation of thrombotic risk factors in various clinical settings[J]. Blood Rev, 2019, 37: 100583. doi:10.1016/j.blre.2019.05.007
doi: 10.1016/j.blre.2019.05.007
|
24 |
TANG W H, STITHAM J, JIN Y, et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets[J]. Circulation, 2014, 129(15): 1598⁃1609. doi:10.1161/circulationaha.113.005224
doi: 10.1161/circulationaha.113.005224
|
25 |
LEE S H, DU J, STITHAM J, et al. Inducing mitophagy in diabetic platelets protects against severe oxidative stress[J]. EMBO Mol Med, 2016, 8(7): 779⁃795. doi:10.15252/emmm.201506046
doi: 10.15252/emmm.201506046
|
26 |
LI Z, DELANEY M K, O'BRIEN K A, et al. Signaling during platelet adhesion and activation[J]. Arterioscler Thromb Vasc Biol, 2010, 30(12): 2341⁃2349. doi:10.1161/atvbaha.110.207522
doi: 10.1161/atvbaha.110.207522
|
27 |
ZHU H, ZHANG L, JIA H, et al. Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation[J]. Phytomedicine, 2022, 104: 154283. doi:10.1016/j.phymed.2022.154283
doi: 10.1016/j.phymed.2022.154283
|
28 |
CHIVA-BLANCH G, PENA E, CUBEDO J, et al. Molecular mapping of platelet hyperreactivity in diabetes: The stress proteins complex HSPA8/Hsp90/CSK2alpha and platelet aggregation in diabetic and normal platelets[J]. Transl Res, 2021, 235: 1⁃14. doi:10.1016/j.trsl.2021.04.003
doi: 10.1016/j.trsl.2021.04.003
|
29 |
ZHU W, LI W, SILVERSTEIN R L. Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36[J]. Blood, 2012, 119(25): 6136⁃6144. doi:10.1182/blood-2011-10-387506
doi: 10.1182/blood-2011-10-387506
|
30 |
CHEN X, XIE Q, ZHU Y, et al. Cardio-protective effect of tetrahydrocurcumin, the primary hydrogenated metabolite of curcumin in vivo and in vitro: Induction of apoptosis and autophagy via PI3K/AKT/mTOR pathways[J]. Eur J Pharmacol, 2021, 911: 174495. doi:10.1016/j.ejphar.2021.174495
doi: 10.1016/j.ejphar.2021.174495
|
31 |
胡锦秋,张春梅,牙甫礼. 食物来源的植物化学物经CD36分子防治心血管疾病的研究进展[J]. 中国食品工业, 2024,(3): 105⁃107.
|
32 |
YANG J Y, ZHONG X, KIM S J, et al. Comparative Effects of Curcumin and Tetrahydrocurcumin on Dextran Sulfate Sodium-induced Colitis and Inflammatory Signaling in Mice[J]. J Cancer Prev, 2018, 23(1): 18⁃24. doi:10.15430/jcp.2018.23.1.18
doi: 10.15430/jcp.2018.23.1.18
|
33 |
张心洁,廖洋样,廖婉,等. 姜黄素固体脂质纳米粒和微胶囊的制备、表征及体内药动学的比较研究[J]. 中草药, 2023, 54(5): 1386⁃1396.
|
34 |
AGGARWAL B B, DEB L, PRASAD S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses[J]. Molecules, 2014, 20(1): 185⁃205. doi:10.3390/molecules20010185
doi: 10.3390/molecules20010185
|