| [1] |
KORKALAINEN H, LEPPANEN T, LEINO A, et al. Review and perspective on sleep-disordered breathing assessment in adults: Advances and clinical translation[J]. Sleep Med Rev, 2024, 72: 101874.
|
| [2] |
OGBU I, OGBU D, NWACHUKWU D, et al. Sleep-disordered breathing and neurocognitive disorders: Mechanisms and management[J]. J Clin Med, 2024, 13(17): 5001. doi:10.3390/jcm13175001
doi: 10.3390/jcm13175001
|
| [3] |
UNGVARI Z, FEKETE M, LEHOCZKI A, et al. Sleep disorders increase the risk of dementia, Alzheimer’s disease, and cognitive decline: A meta-analysis[J]. Gero Sci, 2025, 47: 4899-4920. doi:10.1007/s11357-025-01637-2
doi: 10.1007/s11357-025-01637-2
|
| [4] |
El AMINE B, ARNAUD C, KHOURI C, et al. Cerebral oxidative stress, inflammation and apoptosis induced by intermittent hypoxia: Systematic review and meta-analysis of rodent data[J]. Eur Respir Rev, 2024, 33(173): 240163. doi:10.1183/16000617.0162-2024
doi: 10.1183/16000617.0162-2024
|
| [5] |
MARTNEAU-DUSSAULT M-É, ANDRE C, DANEAULT V, et al. Medial temporal lobe and obstructive sleep apnea: Effects of sex, age, cognitive status, and free-water[J]. NeuroImage Clin, 2022, 36: 103235. doi:10.1016/j.nicl.2022.103235
doi: 10.1016/j.nicl.2022.103235
|
| [6] |
MARCHI NA, DANEAULT V, ANDRE C, et al. Altered fornix integrity is associated with sleep apnea-related hypoxemia in mild cognitive impairment[J]. Alzheimers Dement, 2024, 20(6): 4092-4105. doi:10.1002/alz.13833
doi: 10.1002/alz.13833
|
| [7] |
LIN S, LIU Q, LIU S, et al. MRI-Indexed Perivascular Space Network Differences Between Obstructive and Central Sleep Apnea[J]. Radiology, 2024, 312(2):e232274.
|
| [8] |
LAVALLE S, MASIELLO E, IANNELLA G, et al. Oxidative stress and inflammation biomarkers in OSA: A comprehensive review[J]. Life, 2024, 14(4): 425. doi:10.3390/life14040425
doi: 10.3390/life14040425
|
| [9] |
CHEN X, ZHANG L, HE Z, et al. Endoplasmic reticulum stress: Molecular mechanism and therapeutic potential[J]. Signal Transduct Target Ther, 2023, 8: 326. doi:10.1038/s41392-023-01570-w
doi: 10.1038/s41392-023-01570-w
|
| [10] |
MARTINEZ-VILLAR C, CALVO-GARCIA M, EULATE-BERAMENDI A, et al. Functional connectivity patterns in late-middle-aged men with obstructive sleep apnea[J]. Front Neurol, 2023, 14: 1215882.
|
| [11] |
MAKIO T, CHEN J, SIMMEN T. ER stress as a sentinel mechanism for ER Ca²⁺ homeostasis[J]. Cell Calcium, 2024, 124: 102961. doi:10.1016/j.ceca.2024.102961
doi: 10.1016/j.ceca.2024.102961
|
| [12] |
YOU C, ZHANG Z, YING H,, et al. Blockage of calcium‑sensing receptor ameliorates chronic intermittent hypoxia‑induced cognitive impairment via the PERK‑ATF4‑CHOP pathway[J]. Exp Neurol, 2023, 368: 114500. doi:10.1016/j.expneurol.2023.114500
doi: 10.1016/j.expneurol.2023.114500
|
| [13] |
WEN W, YAO Q, CHEN Y, et al. Transient receptor potential canonical 5 channel is involved in the cardiac damage related to obstructive sleep apnea-hypopnea syndrome in rats [J]. Ann Palliat Med, 2020, 9(3): 895-902. doi:10.21037/apm.2020.04.08
doi: 10.21037/apm.2020.04.08
|
| [14] |
邱璇, 沙热扎提·依沙江, 陈玉岚, 等. 瞬时受体电位通道5对间歇性低氧致心肌焦亡的影响[J]. 实用医学杂志, 2024, 40(12): 1637-1642.
|
| [15] |
ZHONG P, LI L, FENG X, et al. Neuronal ferroptosis and ferroptosis-mediated ER stress: Implications in cognitive dysfunction induced by chronic intermittent hypoxia in mice[J]. Int Immunopharmacol, 2024, 138: 112579. doi:10.1016/j.intimp.2024.112579
doi: 10.1016/j.intimp.2024.112579
|
| [16] |
QIU X, LI L, WEI J, et al. The protective role of Nrf2 on cognitive impairment in chronic intermittent hypoxia and sleep fragmentation mice[J]. Int Immunopharmacol, 2023, 116: 109813. doi:10.1016/j.intimp.2023.109813
doi: 10.1016/j.intimp.2023.109813
|
| [17] |
VARDANIAN M, RAVDIN L. Cognitive Complaints and Comorbidities in Obstructive Sleep Apnea[J]. leep Med Clin, 2022, 17(4): 647-656. doi:10.1016/j.jsmc.2022.07.009
doi: 10.1016/j.jsmc.2022.07.009
|
| [18] |
ZHANG K, MA D, WU Y, et al. Impact of Chronic Intermittent Hypoxia on Cognitive Function and Hippocampal Neurons in Mice: A Study of Inflammatory and Oxidative Stress Pathways[J]. Nat Sci Sleep, 2024, 16: 2029-2043. doi:10.2147/nss.s489232
doi: 10.2147/nss.s489232
|
| [19] |
MIYO K, UCHIDA Y, NAKANO R, et al. Intermittent Hypoxia Induces Cognitive Dysfunction and Hippocampal Gene Expression Changes in a Mouse Model of Obstructive Sleep Apnea[J]. Int J Mol Sci, 2025, 26(15): 7495. doi:10.3390/ijms26157495
doi: 10.3390/ijms26157495
|
| [20] |
JIA N N, GUO J, FENG J, et al. Chronic intermittent hypoxia–induced neural injury: Mechanisms and interventions[J]. CNS Neurosci Ther, 2025, 31(4): e70384.
|
| [21] |
YANG H, YUAN Y, YANG K, et al. ELK4 ameliorates cognitive impairment and neuroinflammation induced by obstructive sleep apnea[J]. Brain Res Bull, 2024, 216: 111054. doi:10.1016/j.brainresbull.2024.111054
doi: 10.1016/j.brainresbull.2024.111054
|
| [22] |
YANG X, ZHANG Y, LIU H, et al. CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway[J]. Sleep Breath, 2025, 29(1): 85. doi:10.1007/s11325-024-03225-8
doi: 10.1007/s11325-024-03225-8
|
| [23] |
YOU Z, WANG X, SUN Q, et al. Blockage of calcium-sensing receptor improves chronic intermittent hypoxia-induced cognitive impairment by PERK-ATF4-CHOP pathway[J]. Exp Neurol, 2023, 370: 114518. doi:10.1016/j.expneurol.2023.114500
doi: 10.1016/j.expneurol.2023.114500
|
| [24] |
YOU C, SUN Y, HE Z, et al. Blockage of calcium-sensing receptor improves chronic intermittent hypoxia-induced cognitive impairment by PERK–ATF4–CHOP pathway[J]. Exp Neurol, 2023, 367: 114489. doi:10.1016/j.expneurol.2023.114500
doi: 10.1016/j.expneurol.2023.114500
|
| [25] |
MA N, LU H, LI N, et al. CHOP-mediated Gasdermin E expression promotes pyroptosis, inflammation, and mitochondrial damage in renal ischemia-reperfusion injury[J]. Cell Death Dis, 2024, 15(2): 163. doi:10.1038/s41419-024-06525-9
doi: 10.1038/s41419-024-06525-9
|