1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
2 |
GBD 2019 Colorectal Cancer Collaborators. Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019 [J]. Lancet Gastroenterol Hepatol,2022,7(8):704.
|
3 |
QIU H, CAO S, XU R. Cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J]. Cancer Commun (Lond), 2021,41(10):1037-1048. doi:10.1002/cac2.12197
doi: 10.1002/cac2.12197
|
4 |
OROOJALIAN F, BEYGI M, BARADARAN B, et al. Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy[J]. Small,2021,17(12):e2006484. doi:10.1002/smll.202006484
doi: 10.1002/smll.202006484
|
5 |
MELE D, NARDOZZA M, SPALLAROSSA P, et al. Current views on anthracycline cardiotoxicity[J]. Heart Fail Rev,2016,21(5):621-634. doi:10.1007/s10741-016-9564-5
doi: 10.1007/s10741-016-9564-5
|
6 |
田冬梅,袁李礼. 心脉隆注射液对阿霉素小鼠心脏损伤的保护作用及其机制[J]. 实用医学杂志,2019,35(21):3286-3289.
|
7 |
FANG K, ZHANG Y, YIN J, et al. Hydrogel beads based on carboxymethyl cassava starch/alginate enriched with MgFe2O4 nanoparticles for controlling drug release[J]. Int J Biol Macromol,2022,220:573-588. doi:10.1016/j.ijbiomac.2022.08.081
doi: 10.1016/j.ijbiomac.2022.08.081
|
8 |
FANG K, LI K, YANG T, et al. Starch-based magnetic nanocomposite as an efficient absorbent for anticancer drug removal from aqueous solution[J]. Int J Biol Macromol, 2021,184:509-521. doi:10.1016/j.ijbiomac.2021.06.103
doi: 10.1016/j.ijbiomac.2021.06.103
|
9 |
周雄,胡明,李子帅,等. 2020年全球及中国结直肠癌流行状况分析[J]. 海军军医大学学报,2022,43(12):1356-1364. doi:10.16781/j.CN31-2187/R.20220593
doi: 10.16781/j.CN31-2187/R.20220593
|
10 |
GANESAN R, PRABHAKARAN V S, VALSALA GOPALAKRISHNAN A. Metabolomic Signatures in Doxorubicin-Induced Metabolites Characterization, Metabolic Inhibition, and Signaling Pathway Mechanisms in Colon Cancer HCT116 Cells[J]. Metabolites, 2022,12(11):1047. doi:10.3390/metabo12111047
doi: 10.3390/metabo12111047
|
11 |
LIU X, LIU J. Tanshinone I induces cell apoptosis by reactive oxygen species-mediated endoplasmic reticulum stress and by suppressing p53/DRAM-mediated autophagy in human hepatocellular carcinoma[J]. Artif Cells Nanomed Biotechnol, 2020,48(1):488-497. doi:10.1080/21691401.2019.1709862
doi: 10.1080/21691401.2019.1709862
|
12 |
汤弘婷,吴道秋,杨瀚林,等. 抑制自噬增强盐酸阿霉素诱导的人结直肠癌细胞凋亡[J]. 细胞与分子免疫学杂志,2022,38(3):237-243.
|
13 |
MARKANDEYWAR T S, NARANG R K, SINGH D, et al. Targeted Delivery of Doxorubicin as a Potential Chemotherapeutic Agent[J]. Curr Drug Deliv,2023,20(7):904-918. doi:10.2174/1567201819666220714101952
doi: 10.2174/1567201819666220714101952
|
14 |
YE X, LI Y, LV B, et al. Endogenous Hydrogen Sulfide Persulfidates Caspase-3 at Cysteine 163 to Inhibit Doxorubicin-Induced Cardiomyocyte Apoptosis[J]. Oxid Med Cell Longev, 2022,2022:6153772. doi:10.1155/2022/6153772
doi: 10.1155/2022/6153772
|
15 |
EL-SAWY W S M, EL-BAHRAWY A H, MESSIHA B A S, et al. The impact of PPAR-γ/Nrf-2/HO-1, NF-κB/IL-6/ Keap-1, and Bcl-2/caspase-3/ATG-5 pathways in mitigation of Dox-induced cardiotoxicity in an animal model: The potential cardioprotective role of oxyresveratrol and/or dapagliflozin[J]. Food Chem Toxicol,2024,191:114863. doi:10.1016/j.fct.2024.114863
doi: 10.1016/j.fct.2024.114863
|
16 |
BILGIN S. Apoptotic effect of 5-fluorouracil-Doxorubicin combination on colorectal cancer cell monolayers and spheroids[J]. Mol Biol Rep, 2024,51(1):603. doi:10.1007/s11033-024-09562-x
doi: 10.1007/s11033-024-09562-x
|
17 |
ZHAO L P, ZHENG R R, RAO X N, et al. Chemotherapy-Enabled Colorectal Cancer Immunotherapy of Self-Delivery Nano-PROTACs by Inhibiting Tumor Glycolysis and Avoiding Adaptive Immune Resistance[J]. Adv Sci (Weinh),2024,11(15):e2309204. doi:10.1002/advs.202309204
doi: 10.1002/advs.202309204
|
18 |
D'ANGELO N A, NORONHA M A, CÂMARA MCC, et al. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years[J]. Biomater Adv,2022,133:112623. doi:10.1016/j.msec.2021.112623
doi: 10.1016/j.msec.2021.112623
|
19 |
WEI W, LI H, YIN C, et al. Research progress in the application of in situ hydrogel system in tumor treatment[J]. Drug Deliv, 2020,27(1):460-468. doi:10.1080/10717544.2020.1739171
doi: 10.1080/10717544.2020.1739171
|
20 |
ANDRADE F, ROCA-MELENDRES M M, DURÁN-LARA E F, et al. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field[J]. Cancers (Basel),2021,3(5):1164. doi:10.3390/cancers13051164
doi: 10.3390/cancers13051164
|
21 |
CARREÑO G, PEREIRA A, ÁVILA-SALAS F, et al. Development of "on-demand" thermo-responsive hydrogels for anti-cancer drugs sustained release: Rational design, in silico prediction and in vitro validation in colon cancer models[J]. Mater Sci Eng C Mater Biol Appl, 2021, 131:112483. doi:10.1016/j.msec.2021.112483
doi: 10.1016/j.msec.2021.112483
|
22 |
ANDRADE F, ROCA-MELENDRES M M, LLAGUNO M, et al. Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach[J]. Carbohydr Polym, 2022, 295:119859. doi:10.1016/j.carbpol.2022.119859
doi: 10.1016/j.carbpol.2022.119859
|
23 |
秦国强,卢旭,张朝枫,等. 超声造影经直肠前列腺靶向穿刺活检术在PSA 4~10 ng/mL患者中的作用[J]. 中华腔镜泌尿外科杂志(电子版),2023,17(1):36-38.
|
24 |
黄忠晶,伍子奕,艾军华. 肝移植治疗结直肠癌肝转移的研究进展[J]. 器官移植,2024,15(2):185-190.
|
25 |
LIANG Y, ZHAO X, MA P X, et al. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery[J]. J Colloid Interface Sci, 2019, 536:224-234. doi:10.1016/j.jcis.2018.10.056
doi: 10.1016/j.jcis.2018.10.056
|