1 |
ANANTHAKRISHNAN A N. Epidemiology and risk factors for IBD[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(4):205-217. doi:10.1038/nrgastro.2015.34
doi: 10.1038/nrgastro.2015.34
|
2 |
KAŁUŻNA A, OLCZYK P, KOMOSIŃSKA-VASSEV K. The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis[J]. J Clin Med, 2022, 11(2):400. doi:10.3390/jcm11020400
doi: 10.3390/jcm11020400
|
3 |
ŚWIRKOSZ G, SZCZYGIEŁ A, LOGOŃ K, et al. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review[J]. Biomedicines, 2023, 11(12):3144. doi:10.3390/biomedicines11123144
doi: 10.3390/biomedicines11123144
|
4 |
ZOU J, LIU C, JIANG S, et al. Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis[J]. Infect Immun, 2021, 89(9):e0001421. doi:10.1128/iai.00014-21
doi: 10.1128/iai.00014-21
|
5 |
WANGCHUK P, YESHI K, LOUKAS A. Ulcerative colitis: Clinical biomarkers, therapeutic targets, and emerging treatments[J]. Trends Pharmacol Sci, 2024, 45(10):892-903. doi:10.1016/j.tips.2024.08.003
doi: 10.1016/j.tips.2024.08.003
|
6 |
BIAZZO M, DEIDDA G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases[J]. J Clin Med, 2022, 11(14):4119. doi:10.3390/jcm11144119
doi: 10.3390/jcm11144119
|
7 |
KOBAYASHI T, SIEGMUND B, LE BERRE C, et al. Ulcerative colitis[J]. Nat Rev Dis Primers, 2020, 6(1):74. doi:10.1038/s41572-020-0205-x
doi: 10.1038/s41572-020-0205-x
|
8 |
PAI R K, D'HAENS G, KOBAYASHI T, et al. Histologic assessments in ulcerative colitis: The evidence behind a new endpoint in clinical trials[J]. Expert Rev Gastroenterol Hepatol, 2024, 18(1/3):73-87. doi:10.1080/17474124.2024.2326838
doi: 10.1080/17474124.2024.2326838
|
9 |
NEURATH M F, VIETH M. Different levels of healing in inflammatory bowel diseases: Mucosal, histological, transmural, barrier and complete healing[J]. Gut,2023, 72(11):2164-2183. doi:10.1136/gutjnl-2023-329964
doi: 10.1136/gutjnl-2023-329964
|
10 |
MORIICHI K, FUJIYA M, OKUMURA T. The endoscopic diagnosis of mucosal healing and deep remission in inflammatory bowel disease[J]. Dig Endosc,2021, 33(7):1008-1023. doi:10.1111/den.13863
doi: 10.1111/den.13863
|
11 |
YAMAMOTO-FURUSHO J K, MARTÍNEZ-BENÍTEZ B, SÁNCHEZ-MORALES G E. Histopathologic parameters at diagnosis as early predictors of histologic remission along the course of ulcerative colitis[J]. Gastroenterol Res Pract, 2020, 2020:8891937. doi:10.1155/2020/8891937
doi: 10.1155/2020/8891937
|
12 |
HUANG L, HE F, WU B. Mechanism of effects of nickel or nickel compounds on intestinal mucosal barrier[J]. Chemosphere, 2022, 305:135429. doi:10.1016/j.chemosphere.2022.135429
doi: 10.1016/j.chemosphere.2022.135429
|
13 |
LI Y Y, WANG X J, SU Y L, et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s[J]. Acta Pharmacol Sin, 2022, 43(6):1495-1507. doi:10.1038/s41401-021-00781-7
doi: 10.1038/s41401-021-00781-7
|
14 |
ZHOU Z, GUO K, LUO Y, et al. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles[J]. Theranostics, 2024, 14(2):528-546. doi:10.7150/thno.87739
doi: 10.7150/thno.87739
|
15 |
FAN X, ZHANG Z, GAO W, et al. An engineered butyrate-derived polymer nanoplatform as a mucosa-healing enhancer potentiates the therapeutic effect of magnolol in inflammatory bowel disease[J]. ACS Nano, 2024, 18(1):229-244. doi:10.1021/acsnano.3c05732
doi: 10.1021/acsnano.3c05732
|
16 |
COANT N, SAKAMOTO W, MAO C, et al. Ceramidases, roles in sphingolipid metabolism and in health and disease[J]. Adv Biol Regul, 2017, 63:122-131. doi:10.1016/j.jbior.2016.10.002
doi: 10.1016/j.jbior.2016.10.002
|
17 |
LIU Z, YANG X, CHEN S, et al. Tumor suppressor ACER1 correlates with prognosis and immune infiltration in head and neck squamous cell carcinoma[J]. Sci Rep, 2024, 14(1):28039. doi:10.1038/s41598-024-78663-1
doi: 10.1038/s41598-024-78663-1
|
18 |
ZHANG X, GONG Z, SHEN Y, et al. Alkaline ceramidase 1-mediated platelet ceramide catabolism mitigates vascular inflammation and abdominal aortic aneurysm formation[J]. Nat Cardiovasc Res, 2023, 2(12):1173-1189. doi:10.1038/s44161-023-00364-1
doi: 10.1038/s44161-023-00364-1
|
19 |
NYSTRÖM N, PRAST-NIELSEN S, CORREIA M, et al. Mucosal and Plasma Metabolomes in New-onset Paediatric Inflammatory Bowel Disease: Correlations with Disease Characteristics and Plasma Inflammation Protein Markers[J]. J Crohns Colitis, 2023, 17(3):418-432. doi:10.1093/ecco-jcc/jjac149
doi: 10.1093/ecco-jcc/jjac149
|
20 |
KAPLAN G G. The global burden of IBD: from 2015 to 2025[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(12):720-727. doi:10.1038/nrgastro.2015.150
doi: 10.1038/nrgastro.2015.150
|
21 |
DI SABATINO A, SANTACROCE G, ROSSI C M, et al. Role of mucosal immunity and epithelial-vascular barrier in modulating gut homeostasis[J]. Intern Emerg Med, 2023, 18(6):1635-1646. doi:10.1007/s11739-023-03329-1
doi: 10.1007/s11739-023-03329-1
|
22 |
WANG J, HE M, YANG M, et al. Gut microbiota as a key regulator of intestinal mucosal immunity[J]. Life Sci, 2024, 345:122612. doi:10.1016/j.lfs.2024.122612
doi: 10.1016/j.lfs.2024.122612
|
23 |
WOLLNY T, WĄTEK M, DURNAŚ B, et al. Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease[J]. Int J Mol Sci, 2017, 18(4):741. doi:10.3390/ijms18040741
doi: 10.3390/ijms18040741
|
24 |
KIHARA A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides[J]. Prog Lipid Res, 2016, 63:50-69. doi:10.1016/j.plipres.2016.04.001
doi: 10.1016/j.plipres.2016.04.001
|
25 |
DU Y X, ZHAO Y T, SUN Y X, et al. Acid sphingomyelinase mediates ferroptosis induced by high glucose via autophagic degradation of GPX4 in type 2 diabetic osteoporosis[J]. Mol Med, 2023, 29(1):125. doi:10.1186/s10020-023-00724-4
doi: 10.1186/s10020-023-00724-4
|
26 |
MACEYKA M, SPIEGEL S. Sphingolipid metabolites in inflammatory disease[J]. Nature, 2014, 510(7503):58-67. doi:10.1038/nature13475
doi: 10.1038/nature13475
|
27 |
BOCK J, LIEBISCH G, SCHWEIMER J, et al. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function[J]. World J Gastroenterol, 2007, 13(39):5217-5225. doi:10.3748/wjg.v13.i39.5217
doi: 10.3748/wjg.v13.i39.5217
|
28 |
LIAKATH-ALI K, VANCOLLIE V E, LELLIOTT C J, et al. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure[J]. J Pathol, 2016, 239(3):374-383. doi:10.1002/path.4737
doi: 10.1002/path.4737
|