1 |
ROSENKRANZ S. 2022 ESC/ERS guidelines on the diagnostics and treatment of pulmonary hypertension: A focussed review[J]. Herz, 2023,48(1):23-30. doi:10.1007/s00059-022-05155-1
doi: 10.1007/s00059-022-05155-1
|
2 |
SAFAIE Q E, STEWART D J. Cellular senescence in the pathogenesis of pulmonary arterial hypertension: the good, the bad and the uncertain[J]. Front Immunol, 2024, 15: 1403669. doi:10.3389/fimmu.2024.1403669
doi: 10.3389/fimmu.2024.1403669
|
3 |
POKHAREL M D, MARCIANO D P, FU P, et al. Metabolic reprogramming, oxidative stress, and pulmonary hypertension[J]. Redox Biol, 2023, 64:102797. doi:10.1016/j.redox.2023.102797
doi: 10.1016/j.redox.2023.102797
|
4 |
GRIFFITHS K, GRAND R J, HORAN I, et al. Fluorinated perhexiline derivative attenuates vascular proliferation in pulmonary arterial hypertension smooth muscle cells[J].Vascul Pharmacol, 2024, 156: 107399. doi:10.1016/j.vph.2024.107399
doi: 10.1016/j.vph.2024.107399
|
5 |
ZHAO S S, LIU J L, WU Q C, et al. Role of histone lactylation interference RNA mA modification and immune microenvironment homeostasis in pulmonary arterial hypertension[J]. Front Cell Dev Biol, 2023, 11: 1268646. doi:10.3389/fcell.2023.1268646
doi: 10.3389/fcell.2023.1268646
|
6 |
YEGAMBARAM M, SUN X, LU Q, et al. Mitochondrial hyperfusion induces metabolic remodeling in lung endothelial cells by modifying the activities of electron transport chain complexes I and III[J]. Free Radic Biol Med, 2024, 210:183-194. doi:10.1016/j.freeradbiomed.2023.11.008
doi: 10.1016/j.freeradbiomed.2023.11.008
|
7 |
艾丽菲热·买买提, 高静, 于子翔,等. 肺动脉平滑肌细胞外泌体上调miR-106b-5p增强肺动脉内皮细胞Warburg效应促进动脉型肺动脉高压的分子机制[J]. 实用医学杂志,2023,39(17):2190-2195. doi:10.3969/j.issn.1006-5725.2023.17.007
doi: 10.3969/j.issn.1006-5725.2023.17.007
|
8 |
GUAN L, WANG H, XU X, et al. Therapeutical Utilization and Repurposing of Artemisinin and Its Derivatives: A Narrative Review[J]. Adv Biol (Weinh), 2023, 7(8):e2300086. doi:10.1002/adbi.202300086
doi: 10.1002/adbi.202300086
|
9 |
BAO C, HE Q, WANG H, et al. Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models[J]. Oxid Med Cell Longev, 2022, 2782429. doi:10.1155/2022/2782429
doi: 10.1155/2022/2782429
|
10 |
TANG M, WANG R, FENG P, et al. Dihydroartemisinin attenuates pulmonary hypertension through inhibition of pulmonary vascular remodeling in rats [J]. J Cardiovasc Pharmacol, 2020, 76(3):337-348. doi:10.1097/fjc.0000000000000862
doi: 10.1097/fjc.0000000000000862
|
11 |
YU H, LIU J, DONG Y, et al. Anti-hypoxic effect of dihydroartemisinin on pulmonary artery endothelial cells. Biochemical and biophysical research communications[J].Biochem Biophys Res Commun, 2018, 506(4):840-846. doi:10.1016/j.bbrc.2018.10.176
doi: 10.1016/j.bbrc.2018.10.176
|
12 |
GAO Y, GONG Y, LU J, et al.Dihydroartemisinin breaks the positive feedback loop of YAP1 and GLUT1-mediated aerobic glycolysis to boost the CD8+ effector T cells in hepatocellular carcinoma[J]. Biochem Pharmacol, 2024, 225:116294. doi:10.1016/j.bcp.2024.116294
doi: 10.1016/j.bcp.2024.116294
|
13 |
LIU Q, CHEN X, TAN Y, et al. Natural products as glycolytic inhibitors for cervical cancer treatment: A comprehensive review[J]. Biomed Pharmacother, 2024, 175:116708. doi:10.1016/j.biopha.2024.116708
doi: 10.1016/j.biopha.2024.116708
|
14 |
ZHANG Y, WANG Y, LI Y, et al. Dihydroartemisinin and artesunate inhibit aerobic glycolysis via suppressing c-Myc signaling in non-small cell lung cancer[J]. Biochem Pharmacol, 2022, 198:114941. doi:10.1016/j.bcp.2022.114941
doi: 10.1016/j.bcp.2022.114941
|
15 |
BAILISTRIERI A, MAKINO A, YUAN J X. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: Role of membrane receptors, ion channels, and Ca2+ signaling[J]. Physiol Rev, 2023, 103(3):1827-1897. doi:10.1152/physrev.00030.2021
doi: 10.1152/physrev.00030.2021
|
16 |
ZAFEIROPOULOS S, AHMED U, BEKIARIDOU A, et al. Ultrasound ueuromodulation of an anti-inflammatory pathway at the spleen improves experimental pulmonary hypertension[J]. Circ Res, 2024, 135: 41-56. doi:10.1161/circresaha.123.323679
doi: 10.1161/circresaha.123.323679
|
17 |
CHEN C N, HAJJI N, YEH F C, et al. Restoration of Foxp3regulatory T cells by HDAC-dependent epigenetic modulation plays a pivotal role in resolving pulmonary arterial hypertension pathology[J].Am J Respir Crit Care Med, 2023, 208: 879-895. doi:10.1164/rccm.202301-0181oc
doi: 10.1164/rccm.202301-0181oc
|
18 |
张波涛,王雅蓉,张婷,等. 甜菜碱调控RhoA/ROCK抑制野百合碱致大鼠肺动脉高压[J]. 实用医学杂志,2023,39(15):1876-1880.
|
19 |
WANG J, LIU C, HUANG S, et al. Functions and novel regulatory mechanisms of key glycolytic enzymes in pulmonary arterial hypertension[J]. Eur J Pharmacol, 2024, 970:176492. doi:10.1016/j.ejphar.2024.176492
doi: 10.1016/j.ejphar.2024.176492
|
20 |
CHEN J, CHEN C, ZHANG Z, et al. Exploring the key amino acid residues surrounding the active center of lactate dehydrogenase A for the development of ideal inhibitors[J]. Molecules, 2024, 29(9):2029. doi:10.3390/molecules29092029
doi: 10.3390/molecules29092029
|
21 |
CHEN M, CEN K, SONG Y, et al.NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2023, 567:216285. doi:10.1016/j.canlet.2023.216285
doi: 10.1016/j.canlet.2023.216285
|
22 |
ZHANG D X, ZHAO X H, GAO Y, et al. Inactivation of KDM6A promotes the progression of colorectal cancer by enhancing the glycolysis[J]. Eur J Med Res, 2024, 29: 310. doi:10.1186/s40001-024-01828-1
doi: 10.1186/s40001-024-01828-1
|
23 |
WU D, WANG S, WANG F, et al. Lactate dehydrogenase A (LDHA)-mediated lactate generation promotes pulmonary vascular remodeling in pulmonary hypertension[J]. J Transl Med, 2024, 22: 738. doi:10.1186/s12967-024-05543-7
doi: 10.1186/s12967-024-05543-7
|
24 |
HAILIWU R, ZENG H, ZHAN M, et al. Salvianolic acid A diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis[J]. Phytother Re, 2023, 37(10):4540-4556. doi:10.1002/ptr.7925
doi: 10.1002/ptr.7925
|
25 |
SI Y, OU H L, JIN X, et al. G protein pathway suppressor 2 suppresses aerobic glycolysis through RACK1-mediated HIF-1αdegradation in breast cancer[J]. Free Radic Biol Med, 2024, 222: 478-492. doi:10.1016/j.freeradbiomed.2024.06.021
doi: 10.1016/j.freeradbiomed.2024.06.021
|
26 |
WANG F, CHEN L, KONG D, et al. Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex[J]. Hepatology, 2024, 79(3):606-623. doi:10.1097/hep.0000000000000569
doi: 10.1097/hep.0000000000000569
|