1 |
SRZIĆ I, NESEK A V, TUNJIĆ P D. SEPSIS DEFINITION: WHAT'S NEW IN THE TREATMENT GUIDELINES [J]. Acta Clin Croat, 2022, 61(): 67-72. doi:10.20471/acc.2022.61.s1.11
doi: 10.20471/acc.2022.61.s1.11
|
2 |
ACKERMAN M H, AHRENS T, KELLY J, et al. Sepsis [J]. Crit Care Nurs Clin North Am, 2021, 33(4): 407-418. doi:10.1016/j.cnc.2021.08.003
doi: 10.1016/j.cnc.2021.08.003
|
3 |
STRNAD P, TACKE F, KOCH A, et al. Liver - guardian, modifier and target of sepsis [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 55-66. doi:10.1038/nrgastro.2016.168
doi: 10.1038/nrgastro.2016.168
|
4 |
KIMURA I, ICHIMURA A, OHUE-KITANO R, et al. Free Fatty Acid Receptors in Health and Disease [J]. Physiol Rev, 2020, 100(1): 171-210. doi:10.1152/physrev.00041.2018
doi: 10.1152/physrev.00041.2018
|
5 |
MUNIZ-SANTOS R, LUCIERI-COSTA G, DE ALMEIDA M A P, et al. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis [J]. Front Immunol, 2023, 14: 1224335. doi:10.3389/fimmu.2023.1224335
doi: 10.3389/fimmu.2023.1224335
|
6 |
AREFANIAN H, AL-KHAIRI I, KHALAF N A, et al. Increased expression level of ANGPTL8 in white adipose tissue under acute and chronic cold treatment [J]. Lipids Health Dis, 2021, 20(1): 117. doi:10.1186/s12944-021-01547-0
doi: 10.1186/s12944-021-01547-0
|
7 |
ZHANG Z, YUAN Y, HU L, et al. ANGPTL8 accelerates liver fibrosis mediated by HFD-induced inflammatory activity via LILRB2/ERK signaling pathways [J]. J Adv Res, 2023, 47: 41-56. doi:10.1016/j.jare.2022.08.006
doi: 10.1016/j.jare.2022.08.006
|
8 |
高玉玖, 胡蓉, 方晨, 等. ANGPTL8敲除减轻DEN诱导的小鼠急性肝损伤 [J]. 实用医学杂志, 2023, 39(3): 278-284. doi:10.3969/j.issn.1006-5725.2023.03.003
doi: 10.3969/j.issn.1006-5725.2023.03.003
|
9 |
GAO Y, YUAN Y, WEN S, et al. Dual role of ANGPTL8 in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis [J]. Oncogenesis, 2023, 12(1): 26. doi:10.1038/s41389-023-00473-3
doi: 10.1038/s41389-023-00473-3
|
10 |
FERNANDEZ-ROJO M A, RAMM G A. Caveolin-1 Function in Liver Physiology and Disease [J]. Trends Mol Med, 2016, 22(10): 889-904. doi:10.1016/j.molmed.2016.08.007
doi: 10.1016/j.molmed.2016.08.007
|
11 |
BOSMANN M, WARD P A. The inflammatory response in sepsis [J]. Trends immunol, 2013, 34(3): 129-136. doi:10.1016/j.it.2012.09.004
doi: 10.1016/j.it.2012.09.004
|
12 |
YAN J, LI S, LI S. The role of the liver in sepsis [J]. Int Rev Immunol, 2014, 33(6): 498-510. doi:10.3109/08830185.2014.889129
doi: 10.3109/08830185.2014.889129
|
13 |
KUBES P, JENNE C. Immune Responses in the Liver [J]. Ann Rev Immunol, 2018, 36: 247-277. doi:10.1146/annurev-immunol-051116-052415
doi: 10.1146/annurev-immunol-051116-052415
|
14 |
KIM T S, CHOI D H. Liver Dysfunction in Sepsis [J]. Korean J Gastroenterol, 2020, 75(4):182-187. doi:10.4166/kjg.2020.75.4.182
doi: 10.4166/kjg.2020.75.4.182
|
15 |
THOMAS H. Sepsis: Bile acids promote inflammation in cholestasis-associated sepsis [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 324-325. doi:10.1038/nrgastro.2017.55
doi: 10.1038/nrgastro.2017.55
|
16 |
VANDEWALLE J, LIBERT C. Sepsis: a failing starvation response [J]. Trends Endocrinol Metab, 2022, 33(4): 292-304. doi:10.1016/j.tem.2022.01.006
doi: 10.1016/j.tem.2022.01.006
|
17 |
WASYLUK W, NOWICKA-STĄŻKA P, ZWOLAK A. Heart Metabolism in Sepsis-Induced Cardiomyopathy-Unusual Metabolic Dysfunction of the Heart [J]. Int J Environ Res Public Health, 2021, 18(14):7598. doi:10.3390/ijerph18147598
doi: 10.3390/ijerph18147598
|
18 |
EYENGA P, REY B, EYENGA L, et al. Regulation of Oxidative Phosphorylation of Liver Mitochondria in Sepsis [J]. Cells, 2022, 11(10):1598. doi:10.3390/cells11101598
doi: 10.3390/cells11101598
|
19 |
HOU K, LI S, ZHANG M, et al. Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis [J]. Clin Chim Acta, 2021, 513: 25-33. doi:10.1016/j.cca.2020.11.020
doi: 10.1016/j.cca.2020.11.020
|
20 |
FRANK P G, PAVLIDES S, CHEUNG M W, et al. Role of caveolin-1 in the regulation of lipoprotein metabolism [J]. Am J Physiol Cell Physiol, 2008, 295(1) :C242-C248. doi:10.1152/ajpcell.00185.2008
doi: 10.1152/ajpcell.00185.2008
|
21 |
KARHAN A N, ZAMMOURI J, AUCLAIR M, et al. Biallelic CAV1 null variants induce congenital generalized lipodystrophy with achalasia [J]. Eur J Endocrinol, 2021, 185(6): 841-854. doi:10.1530/eje-21-0915
doi: 10.1530/eje-21-0915
|
22 |
XUE W, WANG J, JIANG W, et al. Caveolin-1 alleviates lipid accumulation in NAFLD associated with promoting autophagy by inhibiting the Akt/mTOR pathway [J]. Eur J Pharmacol, 2020, 871: 172910. doi:10.1016/j.ejphar.2020.172910
doi: 10.1016/j.ejphar.2020.172910
|
23 |
RAZANI B, COMBS T P, WANG X B, et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities [J]. J Biol Chem, 2002, 277(10): 8635-8647. doi:10.1074/jbc.m110970200
doi: 10.1074/jbc.m110970200
|