1 |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023,73(1):17-48. doi:10.3322/caac.21763
doi: 10.3322/caac.21763
|
2 |
WONG K C W, HUI E P, LO K W, et al. Nasopharyngeal carcinoma: an evolving paradigm[J]. Nat Rev Clin Oncol, 2021,18(11):679-695. doi:10.1038/s41571-021-00524-x
doi: 10.1038/s41571-021-00524-x
|
3 |
LEE A W M, NG W T, CHAN J Y W, et al. Management of locally recurrent nasopharyngeal carcinoma[J]. Cancer Treat Rev,2019,79:101890. doi:10.1016/j.ctrv.2019.101890
doi: 10.1016/j.ctrv.2019.101890
|
4 |
赵海鹰,李思维. 复发鼻咽癌综合治疗及其进展[J]. 实用医学杂志,2018,34(5):691-693,697. doi:10.3969/j.issn.1006-5725.2018.05.001
doi: 10.3969/j.issn.1006-5725.2018.05.001
|
5 |
CHEN L, MIN J, WANG F. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022,7(1):378. doi:10.1038/s41392-022-01229-y
doi: 10.1038/s41392-022-01229-y
|
6 |
GUAN D, ZHAO L, SHI X, et al. Copper in cancer: From pathogenesis to therapy[J]. Biomed Pharmacother, 2023,163:114791. doi:10.1016/j.biopha.2023.114791
doi: 10.1016/j.biopha.2023.114791
|
7 |
FANG C, PENG Z, SANG Y, et al. Copper in Cancer: from transition metal to potential target[J]. Hum Cell, 2024,37(1):85-100. doi:10.1007/s13577-023-00985-5
doi: 10.1007/s13577-023-00985-5
|
8 |
HSU H Y, LIN S Y, HUANG C J, et al. Changes of serum copper and zinc levels in patients with nasopharyngeal carcinoma by radiotherapy[J]. Biol Trace Elem Res, 1994,46(1/2):1-13. doi:10.1007/bf02790064
doi: 10.1007/bf02790064
|
9 |
FANG A P, CHEN P Y, WANG X Y, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort[J]. Int J Cancer, 2019,144(11):2823-2832. doi:10.1002/ijc.31991
doi: 10.1002/ijc.31991
|
10 |
WANG W, WANG X, LUO J, et al. Serum Copper Level and the Copper-to-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China[J]. Nutr Cancer, 2021,73(10):1908-1915. doi:10.1080/01635581.2020.1817957
doi: 10.1080/01635581.2020.1817957
|
11 |
ZHANG L, SHAO J, TAN S W, et al. Association between serum copper/zinc ratio and lung cancer: A systematic review with meta-analysis[J]. J Trace Elem Med Biol, 2022,74:127061. doi:10.1016/j.jtemb.2022.127061
doi: 10.1016/j.jtemb.2022.127061
|
12 |
BENGTSSON Y, DEMIRCAN K, VALLON-CHRISTERSSON J, et al. Serum copper, zinc and copper/zinc ratio in relation to survival after breast cancer diagnosis: A prospective multicenter cohort study[J]. Redox Biol, 2023,63:102728. doi:10.1016/j.redox.2023.102728
doi: 10.1016/j.redox.2023.102728
|
13 |
YANG M, WU X, HU J, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol, 2022,76(5):1138-1150. doi:10.1016/j.jhep.2022.01.009
doi: 10.1016/j.jhep.2022.01.009
|
14 |
ARNESANO F, NATILE G. Interference between copper transport systems and platinum drugs[J]. Semin Cancer Biol, 2021,76:173-188. doi:10.1016/j.semcancer.2021.05.023
doi: 10.1016/j.semcancer.2021.05.023
|
15 |
KUO M T, HUANG Y F, CHOU C Y, et al. Targeting the Copper Transport System to Improve Treatment Efficacies of Platinum-Containing Drugs in Cancer Chemotherapy[J]. Pharmaceuticals (Basel), 2021,14(6):549. doi:10.3390/ph14060549
doi: 10.3390/ph14060549
|
16 |
KADU P, SAWANT B, KALE P P, et al. Copper-lowering agents as an adjuvant in chemotherapy[J]. Indian J Pharmacol,2021,53(3):221-225.
|
17 |
ULLAH R, YIN Q, SNELL A H, et al. RAF-MEK-ERK pathway in cancer evolution and treatment[J]. Semin Cancer Biol, 2022,85:123-154. doi:10.1016/j.semcancer.2021.05.010
doi: 10.1016/j.semcancer.2021.05.010
|
18 |
BRADY D C, CROWE M S, TURSKI M L, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis[J]. Nature, 2014,509(7501):492-496. doi:10.1038/nature13180
doi: 10.1038/nature13180
|
19 |
MARAMPON F, CICCARELLI C, ZANI B M. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation[J]. Int J Mol Sci, 2019,20(10):2530. doi:10.3390/ijms20102530
doi: 10.3390/ijms20102530
|
20 |
刘慧,何彩娴,彭继勇,等. 鼻咽癌放射治疗致放射性颈动脉损伤的研究进展[J]. 实用医学杂志, 2023,39(10):1201-1205. doi:10.3969/j.issn.1006-5725.2023.10.002
doi: 10.3969/j.issn.1006-5725.2023.10.002
|
21 |
TESSMER C F, HRGOVCIC M, THOMAS F B, et al. Serum copper as an index of tumor response to radiotherapy[J]. Radiology, 1973,106(3):635-639. doi:10.1148/106.3.635
doi: 10.1148/106.3.635
|
22 |
JIANG Y, HUO Z, QI X, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine (Lond), 2022,17(5):303-324. doi:10.2217/nnm-2021-0374
doi: 10.2217/nnm-2021-0374
|
23 |
XUE Q, YAN D, CHEN X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023,19(7):1982-1996. doi:10.1080/15548627.2023.2165323
doi: 10.1080/15548627.2023.2165323
|
24 |
ISHIDA S, ANDREUX P, POITRY-YAMATE C,et al. Bioavailable copper modulates oxidative phosphorylation and growth of tumors[J]. Proc Natl Acad Sci U S A, 2013,110(48):19507-19512. doi:10.1073/pnas.1318431110
doi: 10.1073/pnas.1318431110
|
25 |
WU Z, LV G, XING F, et al. Copper in hepatocellular carcinoma: A double-edged sword with therapeutic potentials[J]. Cancer Lett, 2023,571:216348. doi:10.1016/j.canlet.2023.216348
doi: 10.1016/j.canlet.2023.216348
|
26 |
BLOCKHUYS S, ZHANG X, WITTUNG-STAFSHEDE P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration[J]. Proc Natl Acad Sci U S A, 2020,117(4):2014-2019. doi:10.1073/pnas.1910722117
doi: 10.1073/pnas.1910722117
|
27 |
HE F, CHANG C, LIU B, et al. Copper (II) Ions Activate Ligand-Independent Receptor Tyrosine Kinase (RTK) Signaling Pathway[J]. Biomed Res Int, 2019:4158415. doi:10.1155/2019/4158415
doi: 10.1155/2019/4158415
|
28 |
GUO J, CHENG J, ZHENG N, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner[J]. Adv Sci (Weinh),2021,8(18):e2004303. doi:10.1002/advs.202004303
doi: 10.1002/advs.202004303
|
29 |
BRADY D C, CROWE M S, TURSKI M L, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis[J]. Nature, 2014,509(7501):492-496. doi:10.1038/nature13180
doi: 10.1038/nature13180
|
30 |
TURSKI M L, BRADY D C, KIM H J, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling[J]. Mol Cell Biol, 2012,32(7):1284-1295. doi:10.1128/mcb.05722-11
doi: 10.1128/mcb.05722-11
|
31 |
ZHANG W, CHEN C, SHI H, et al. Curcumin is a biologically active copper chelator with antitumor activity[J]. Phytomedicine,2016,23(1):1-8. doi:10.1016/j.phymed.2015.11.005
doi: 10.1016/j.phymed.2015.11.005
|
32 |
XIE J, YANG Y, GAO Y, et al. Cuproptosis: mechanisms and links with cancers[J]. Mol Cancer, 2023,22(1):46. doi:10.1186/s12943-023-01732-y
doi: 10.1186/s12943-023-01732-y
|
33 |
CHAN N, WILLIS A, KORNHAUSER N, et al. Influencing the Tumor Microenvironment: A Phase Ⅱ Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases [J]. Clin Cancer Res, 2017,23(3):666-676. doi:10.1158/1078-0432.ccr-16-1326
doi: 10.1158/1078-0432.ccr-16-1326
|
34 |
BRADY D C, CROWE M S, GREENBERG D N, et al. Copper Chelation Inhibits BRAFV600E-Driven Melanomagenesis and Counters Resistance to BRAFV600E and MEK1/2 Inhibitors[J]. Cancer Res,2017,77(22):6240-6252. doi:10.1158/0008-5472.can-16-1190
doi: 10.1158/0008-5472.can-16-1190
|
35 |
CUI L, GOUW A M, LAGORY E L,et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice[J]. Nat Biotechnol,2021,39(3):357-367. doi:10.1038/s41587-020-0707-9
doi: 10.1038/s41587-020-0707-9
|
36 |
常卫才,陈佳伟,刘子祥,等. 乙酰肝素酶通过ERK/MMP-9信号通路促进胆囊癌细胞侵袭和迁移[J]. 实用医学杂志, 2023,39(13):1620-1626. doi:10.3969/j.issn.1006-5725.2023.13.005
doi: 10.3969/j.issn.1006-5725.2023.13.005
|
37 |
LIU X, FENG Y, XU J, et al. Combination of MAPK inhibition with photothermal therapy synergistically augments the anti-tumor efficacy of immune checkpoint blockade[J]. J Control Release,2021,332:194-209. doi:10.1016/j.jconrel.2021.02.020
doi: 10.1016/j.jconrel.2021.02.020
|
38 |
YU J, WU X, SONG J,et al. Loss of MHC-I antigen presentation correlated with immune checkpoint blockade tolerance in MAPK inhibitor-resistant melanoma[J]. Front Pharmacol, 2022,13:928226. doi:10.3389/fphar.2022.928226
doi: 10.3389/fphar.2022.928226
|