实用医学杂志 ›› 2024, Vol. 40 ›› Issue (6): 870-876.doi: 10.3969/j.issn.1006-5725.2024.06.024
• 综述 • 上一篇
收稿日期:
2023-10-27
出版日期:
2024-03-25
发布日期:
2024-04-08
通讯作者:
张楠
E-mail:jinglei.1999@163.com
基金资助:
Shu CHEN1,Jinglei ZHANG2,Kang RONG3,Nan ZHANG4(),Weiyi SUN4
Received:
2023-10-27
Online:
2024-03-25
Published:
2024-04-08
Contact:
Nan ZHANG
E-mail:jinglei.1999@163.com
摘要:
胃癌(Gastric cancer)是最常见的肿瘤之一,是全球癌症相关死亡的第四大原因。因早期GC缺乏特异性体征,大多数病例确诊时已经是晚期,常伴有浸润和远处转移。化疗虽是胃癌最常用的疗法,但因耐药性的出现,许多患者在化疗后仍会复发,导致预后不良。肿瘤微环境(tumor micro environment,TME)中的外泌体(exosome,EXOs)可参加细胞间通讯在GC远处转移及耐药中发挥着重要作用。目前GC远处转移及耐药性的详细机制尚不清楚,确定参与胃癌远处转移及耐药性的外泌体引发的机制可以帮助我们为胃癌转移及耐药的防治找到更可靠的治疗手段。本文就外泌体在胃癌远处转移及耐药中的作用机制作一综述,旨在为胃癌的诊治及研究提供帮助。
中图分类号:
陈舒,张静蕾,荣康,张楠,孙维义. 外泌体在胃癌远处转移和耐药性中的研究进展[J]. 实用医学杂志, 2024, 40(6): 870-876.
Shu CHEN,Jinglei ZHANG,Kang RONG,Nan ZHANG,Weiyi SUN. Research progress of exosomes in distant metastasis and drug resistance of gastric cancer[J]. The Journal of Practical Medicine, 2024, 40(6): 870-876.
表1
参与胃癌远处转移的外泌体"
外泌体来源 | 外泌体类型 | 受体细胞 | 作用靶点 | 转移 器官 | 作用机制 | 促进/ 抑制 | 研究对象 | 肿瘤造模 位置 | 参考 |
---|---|---|---|---|---|---|---|---|---|
胃癌细胞 | miR-106a | 人腹膜间 皮细胞HMrSV7 | Smad7 | 腹膜 | 激活TGF-β/ Smad7通路、 MMT | 促进 | 雄性BALB/c裸鼠、人胃癌细胞(AGS、BGC-823、MKN-45、 MKN-74、NCI-N87)、人腹膜 间皮细胞HMrSV5 | 后腿皮下 | [ |
胃癌细胞 | miR-106a | 人胃癌细胞NCI-N87 | Smad7、 TIMP2 | 腹膜 | 激活TGF-β/ Smad7通路、 MMT | 促进 | 雄性BALB/c裸鼠、人胃癌细胞(AGS、BGC-823和NCI-N87)、 人腹膜间皮细胞HMrSV5 | 前腿右侧皮下 | [ |
胃癌细胞 | NNMT | 人腹膜间 皮细胞HMrSV5 | - | 腹膜 | 激活TGF-β/ Smad2通路 | 促进 | 人胃癌细胞株(GC-114、GC-026、MKN45和SNU-16)、人正常胃黏膜 上皮细胞株GES-1、人腹膜间皮 细胞HMrSV5 | - | [ |
间充质干细 胞(MSC) | miR-29b | MSC系UE6E7T-12 | TGF-β1 | 腹膜 | 阻断TGF-β1 通路、MMT | 抑制 | C57BL/6N小鼠、NUGC-4人胃癌 细胞、MSC系UE6E7T-12 | - | [ |
胃癌细胞 | miR-519a-3p | 肝内巨噬 细胞 | DUSP2 | 肝脏 | 促进肝内巨噬细 胞的M2样极化、 促进血管生成、 激活MAPK/ ERK通路 | 促进 | 雌性小鼠、人胃上皮细胞系GES -1 和GC细胞系(MKN45、MKN45-HL、HGC-27、NCI-N87)、KATOIII和AGS | 前肢的腋窝、脾脏 | [ |
胃癌细胞 | circRNAUBE2Q2 | - | miR-370-3p | 肝脏 | 抑制自噬并促进 糖酵解,激活 STAT3信号通路 和EMT | 促进 | 雌性BALB/c裸鼠、人GC细胞系BGC-823、SGC-7901、MKN-45、 MGC-803、HGC-27和正常GES-1 胃黏膜上皮细胞系 | 腹股沟区域皮下、肝门静脉 | [ |
胃癌细胞 | - | MGC803、MKN45细胞 | - | 肺脏 | - | 促进 | BALB/c小鼠、MKN45、MKN31、MGC31、MGC803细胞 | 尾静脉 | [ |
胃癌细胞 | LINC01091 | HGC-27、MKN45 | miR-128-3p | 肺脏 | miR-128-3p/ ELF4/CDX2轴 | 促进 | 雄性BALB/c裸鼠、人胃癌细胞系(NCI-N87和AGS)、人胚肾细胞系HEK293T、HGC细胞株HGC-27、MKN45及人正常胃黏膜细胞株GES-1 | 皮下、尾静脉 | [ |
胃癌细胞 | miR-92a-3p | 肺巨噬细胞 | PD-L1 | 肺脏 | 激活ERK信号通 路、诱导免疫抑制 性巨噬细胞极化 | 促进 | 雌性C57BL/6N、小鼠前胃癌 (MFC)细胞系、肺癌细胞系 LLC细胞、巨噬细胞 | 尾静脉 | [ |
胃癌细胞 | circFCHO2 | HGC-3和AGS细胞 | miR-194-5p | 肺脏 | 激活JAK194/ STAT5通路 | 促进 | BALB/c裸鼠、GC细胞系(MKN28, HGC-27,MKN45和AGS) | 背部右侧皮下、尾静脉 | [ |
胃癌细胞 | hsa_circ_0000437 | 人淋巴内皮细胞HLECs | HSPA2 | 淋巴结 | 激活HSPA2-ERK 信号通路 | 促进 | 雌性裸鼠、HGC-27细胞、MKN-1 细胞和MKN-45细胞、GES-1细胞、 BGC-823细胞、人淋巴内皮细胞HLECs | 足底皮下 | [ |
高度淋巴 转移的胃 癌细胞 | CD44 | HGC-27、AGS | RhoA | 淋巴结 | 调节RhoA/ YAP/Prox1/ CPT1A信号轴 | 促进 | 雄性BALB/c裸鼠、胃癌细胞系 AGS和HGC-27 | 足底皮下 | [ |
表2
参与胃癌化疗耐药的外泌体"
外泌体来源 | 外泌体类型 | 受体细胞 | 作用靶点 | 耐药药物 名称 | 耐药性 | 机制 | 研究对象 | 动物造模位置 | 参考 |
---|---|---|---|---|---|---|---|---|---|
BGC823/DDP | miR-769-5p | BGC823、 BGC9 | CASP9 | DDP | 促进 | 促p53 蛋白泛素化、抑制凋亡 | BALB/c裸鼠、BGC823、BGC823/DDP细胞、 BGC9细胞 | 皮下 | [ |
TAM | LncRNA CRNDE | MFC、 SGC7901 | PTEN和 NEDD4-1 | DDP | 促进 | 促进PTEN泛素化、抑制凋亡 | BALB/c雄性裸鼠、小鼠GC细胞系MFC和人GC细胞系SGC7901、MGC-803 | 皮下 | [ |
CAF | miR-522 | SGC7901、 MGC803、 MKN45 | ALOX15 | DDP、 PTX | 促进 | 抑制铁死亡,参与泛素-蛋白酶体途径 | BALB/c雄性裸鼠、人胃 癌细胞系SGC7901、 MGC803细胞和MKN45细胞 | 皮下 | [ |
HGC-27/DDP、AGS/DDP | circ-LDLRAD3 | - | miR-588 | DDP | 促进 | 上调SOX5 | BALB/c雌性裸鼠、GC细胞(NCI-N87,HGC-27和AGS),HGC-27/DDP、 AGS/DDP | 皮下 | [ |
HGC-27/OXA、AGS/OXA | Circ_0032821 | HGC-27 和AGC | miR-515-5p | L-OHP | 促进 | 上调SOX9 | 雄性BALB/C裸鼠、GC细胞系(HGC-27和AGS)、HGC-27/OXA和AGS/ OXA | 右侧皮下 | [ |
HGC27/PTX、KATOIII/PTX | - | HGC27和 KATOIII | - | PTX | 促进 | 促进P-gp的过表达 | AGS,HGC27,KATOⅢ和NCI-N87 | - | [ |
SGC-7901、MGC-803 | miR-107 | SGC-7901/5-FU 和SGC-7901/DDP | HMGA2 | 5-FU、 DDP | 抑制 | 抑制P-gp的表达水平 | SGC-7901/5-FU和SGC-7901/DDP、MGC-803和HEK 293 T细胞系 | - | [ |
CAF | IL-8 | HGC-27和AGS | - | L-OHP | 促进 | 激活PI3K/AKT途径 | BALB/c裸鼠、人胃癌细 胞株HGC-27和AGS、 CAF | 皮下 | [ |
HGC-27/OXA | circ_0091741 | HGC-27 | miR-330-3p | L-OHP | 促进 | Wnt/β-连环蛋白轴 | 人正常胃黏膜上皮细胞株GES-1和胃癌细胞株(AGS、HGC-27、MKN-45、MKN-74和NCI-N87)、HGC-27/OXA细胞 | 右背部皮下 | [ |
1 |
XU X, LI Y, WU Y, et al. Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer[J]. Redox Biol, 2023, 59:102564. doi:10.1016/j.redox.2022.102564
doi: 10.1016/j.redox.2022.102564 |
2 |
严健亮, 景蓉蓉, 谢泽宇, 等. 机器学习在胃癌生物标志物挖掘中的应用进展[J]. 实用医学杂志, 2023, 39(6):783-787. doi:10.3969/j.issn.1006-5725.2023.06.023
doi: 10.3969/j.issn.1006-5725.2023.06.023 |
3 | 中国抗癌协会肿瘤营养专业委员会, 中华医学会肠外肠内营养学分会. 胃癌患者的营养治疗专家共识[J]. 肿瘤代谢与营养电子杂志, 2023, 10(2):208-212. |
4 |
YANG H, ZOU X, YANG S, et al. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer[J]. Front Immunol, 2023, 14:1149989. doi:10.3389/fimmu.2023.1149989
doi: 10.3389/fimmu.2023.1149989 |
5 |
WANG X, ZHANG J, CAO G, et al. Emerging roles of circular RNAs in gastric cancer metastasis and drug resistance[J]. J Exp Clin Cancer Res, 2022, 41(1):218. doi:10.1186/s13046-022-02432-z
doi: 10.1186/s13046-022-02432-z |
6 |
OUYANG S, LI H, LOU L, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer[J]. Redox Biol, 2022, 52:102317. doi:10.1016/j.redox.2022.102317
doi: 10.1016/j.redox.2022.102317 |
7 |
HAN C, ZHANG C, WANG H, et al. Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment[J]. Oncoimmunology, 2021, 10(1):1887552. doi:10.1080/2162402x.2021.1887552
doi: 10.1080/2162402x.2021.1887552 |
8 |
ZHANG C, WEI G, ZHU X, et al. Exosome-Delivered circSTAU2 Inhibits the Progression of Gastric Cancer by Targeting the miR-589/CAPZA1 Axis[J]. Int J Nanomedicine, 2023, 18:127-142. doi:10.2147/ijn.s391872
doi: 10.2147/ijn.s391872 |
9 |
陈倩, 唐秋萍. 循环血浆外泌体及其应用研究进展[J]. 实用医学杂志, 2023, 39(15):1998-2003. doi:10.3969/j.issn.1006-5725.2023.15.024
doi: 10.3969/j.issn.1006-5725.2023.15.024 |
10 |
QU X, LIU B, WANG L, et al. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer[J]. Drug Resist Updat, 2023, 68:100936. doi:10.1016/j.drup.2023.100936
doi: 10.1016/j.drup.2023.100936 |
11 |
CHEN Y, LIU H, ZOU J, et al. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis[J]. Hum Cell, 2023, 36(1):258-275. doi:10.1007/s13577-022-00790-6
doi: 10.1007/s13577-022-00790-6 |
12 |
KIMURA Y, OHZAWA H, MIYATO H, et al. Intraperitoneal transfer of microRNA-29b-containing small extracellular vesicles can suppress peritoneal metastases of gastric cancer[J]. Cancer Sci, 2023. doi:10.1111/cas.15793
doi: 10.1111/cas.15793 |
13 |
QIU S, XIE L, LU C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1):296. doi:10.1186/s13046-022-02499-8
doi: 10.1186/s13046-022-02499-8 |
14 |
JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420. doi:10.1016/s0021-9258(18)48095-7
doi: 10.1016/s0021-9258(18)48095-7 |
15 |
SADEGHI S, TEHRANI F R, TAHMASEBI S, et al. Exosome engineering in cell therapy and drug delivery[J]. Inflammopharmacology, 2023, 31(1):145-169. doi:10.1007/s10787-022-01115-7
doi: 10.1007/s10787-022-01115-7 |
16 |
PARK M, KIM D, KO S, et al. Breast Cancer Metastasis: Mechanisms and Therapeutic Implications[J]. Int J Mol Sci, 2022, 23(12):6806. doi:10.3390/ijms23126806
doi: 10.3390/ijms23126806 |
17 |
HU Y, QI C, LIU X, et al. Malignant ascites-derived exosomes promote peritoneal tumor cell dissemination and reveal a distinct miRNA signature in advanced gastric cancer[J]. Cancer Lett, 2019, 457:142-150. doi:10.1016/j.canlet.2019.04.034
doi: 10.1016/j.canlet.2019.04.034 |
18 |
ZHU M, ZHANG N, HE S, et al. Exosomal miR-106a derived from gastric cancer promotes peritoneal metastasis via direct regulation of Smad7[J]. Cell Cycle, 2020, 19(10):1200-1221. doi:10.1080/15384101.2020.1749467
doi: 10.1080/15384101.2020.1749467 |
19 |
ZHU M, ZHANG N, MA J, et al. Integration of exosomal miR-106a and mesothelial cells facilitates gastric cancer peritoneal dissemination[J]. Cell Signal, 2022, 91:110230. doi:10.1016/j.cellsig.2021.110230
doi: 10.1016/j.cellsig.2021.110230 |
20 |
ZHU A K, SHAN Y Q, ZHANG J, et al. Exosomal NNMT from peritoneum lavage fluid promotes peritoneal metastasis in gastric cancer[J]. Kaohsiung J Med Sci, 2021, 37(4):305-313. doi:10.1002/kjm2.12334
doi: 10.1002/kjm2.12334 |
21 |
YANG J, ZHANG X, CAO J, et al. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis[J]. Cell Death Dis, 2021, 12(10):910. doi:10.1038/s41419-021-04216-3
doi: 10.1038/s41419-021-04216-3 |
22 |
GU J, CHU X, HUO Y, et al. Gastric cancer-derived exosomes facilitate pulmonary metastasis by activating ERK-mediated immunosuppressive macrophage polarization[J]. J Cell Biochem, 2023, 124(4):557-572. doi:10.1002/jcb.30390
doi: 10.1002/jcb.30390 |
23 |
WU S, TANG C, ZHANG Q W, et al. Overexpression of RAB31 in gastric cancer is associated with released exosomes and increased tumor cell invasion and metastasis[J]. Cancer Med, 2023, 12(12):13497-13510. doi:10.1002/cam4.6007
doi: 10.1002/cam4.6007 |
24 |
WANG Q, ZHANG C, CAO S, et al. Tumor-derived exosomes orchestrate the microRNA-128-3p/ELF4/CDX2 axis to facilitate the growth and metastasis of gastric cancer via delivery of LINC01091[J]. Cell Biol Toxicol, 2023, 39(2):519-536. doi:10.1007/s10565-022-09728-y
doi: 10.1007/s10565-022-09728-y |
25 |
ZHANG Z, SUN C, ZHENG Y, et al. circFCHO2 promotes gastric cancer progression by activating the JAK1/STAT3 pathway via sponging miR-194-5p[J]. Cell Cycle, 2022, 21(20):2145-2164. doi:10.1080/15384101.2022.2087280
doi: 10.1080/15384101.2022.2087280 |
26 |
WANG Y, LI X, ZHANG T, et al. Neutrophils promote tumor invasion via FAM3C-mediated epithelial-to-mesenchymal transition in gastric cancer[J]. Int J Biol Sci, 2023, 19(5):1352-1368. doi:10.7150/ijbs.79022
doi: 10.7150/ijbs.79022 |
27 |
SHEN X, KONG S, MA S, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis[J]. Oncogene, 2022, 41(42):4724-4735. doi:10.1038/s41388-022-02449-w
doi: 10.1038/s41388-022-02449-w |
28 |
WANG M, YU W, CAO X, et al. Exosomal CD44 Transmits Lymph Node Metastatic Capacity Between Gastric Cancer Cells via YAP-CPT1A-Mediated FAO Reprogramming[J]. Front Oncol, 2022, 12:860175. doi:10.3389/fonc.2022.860175
doi: 10.3389/fonc.2022.860175 |
29 |
DUAN C, YU M, XU J, et al. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges[J]. Biomed Pharmacother, 2023, 162:114643. doi:10.1016/j.biopha.2023.114643
doi: 10.1016/j.biopha.2023.114643 |
30 |
CAO S, FU B, CAI J, et al. Linc00852 from cisplatin-resistant gastric cancer cell-derived exosomes regulates COMMD7 to promote cisplatin resistance of recipient cells through microRNA-514a-5p[J]. Cell Biol Toxicol, 2023, 39(2):483-496. doi:10.1007/s10565-021-09685-y
doi: 10.1007/s10565-021-09685-y |
31 |
WANG J, XIANG Y, FAN M, et al. The Ubiquitin-Proteasome System in Tumor Metabolism[J]. Cancers (Basel), 2023, 15(8):2385. doi:10.3390/cancers15082385
doi: 10.3390/cancers15082385 |
32 |
JING X, XIE M, DING K, et al. Exosome-transmitted miR-769-5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53[J]. Clin Transl Med, 2022, 12(5):e780. doi:10.1002/ctm2.780
doi: 10.1002/ctm2.780 |
33 |
XIN L, ZHOU L Q, LIU C, et al. Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer[J]. EMBO Rep, 2021, 22(12):e52124. doi:10.15252/embr.202052124
doi: 10.15252/embr.202052124 |
34 |
ZHANG H, DENG T, LIU R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer[J]. Mol Cancer, 2020, 19(1):43. doi:10.1186/s12943-020-01168-8
doi: 10.1186/s12943-020-01168-8 |
35 |
ABADI A J, ZARRABI A, HASHEMI F, et al. The role of SOX family transcription factors in gastric cancer[J]. Int J Biol Macromol, 2021, 180:608-624. doi:10.1016/j.ijbiomac.2021.02.202
doi: 10.1016/j.ijbiomac.2021.02.202 |
36 |
LIANG Q, CHU F, ZHANG L, et al. circ-LDLRAD3 Knockdown Reduces Cisplatin Chemoresistance and Inhibits the Development of Gastric Cancer with Cisplatin Resistance through miR-588 Enrichment-Mediated SOX5 Inhibition[J]. Gut Liver, 2023, 17(3):389-403. doi:10.5009/gnl210195
doi: 10.5009/gnl210195 |
37 |
ZHONG Y, WANG D, DING Y, et al. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5p[J]. Biotechnol Lett, 2021, 43(2):339-351. doi:10.1007/s10529-020-03036-3
doi: 10.1007/s10529-020-03036-3 |
38 |
SHAH D, AJAZUDDIN, BHATTACHARYA S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents[J]. J Cancer Res Clin Oncol, 2023, 149(1):367-391. doi:10.1007/s00432-022-04387-2
doi: 10.1007/s00432-022-04387-2 |
39 |
SCHIRIZZI A, CONTINO M, CARRIERI L, et al. The multiple combination of Paclitaxel, Ramucirumab and Elacridar reverses the paclitaxel-mediated resistance in gastric cancer cell lines[J]. Front Oncol, 2023, 13:1129832. doi:10.3389/fonc.2023.1129832
doi: 10.3389/fonc.2023.1129832 |
40 |
JIANG L, ZHANG Y, GUO L, et al. Exosomal microRNA-107 reverses chemotherapeutic drug resistance of gastric cancer cells through HMGA2/mTOR/P-gp pathway[J]. BMC Cancer, 2021, 21(1):1290. doi:10.1186/s12885-021-09020-y
doi: 10.1186/s12885-021-09020-y |
41 |
YANG C, MAI Z, LIU C, et al. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways[J]. Molecules, 2022, 27(11):3513. doi:10.3390/molecules27113513
doi: 10.3390/molecules27113513 |
42 |
ZHAO Z X, ZHANG Y Q, SUN H, et al. Calcipotriol abrogates cancer-associated fibroblast-derived IL-8-mediated oxaliplatin resistance in gastric cancer cells via blocking PI3K/Akt signaling[J]. Acta Pharmacol Sin, 2023, 44(1):178-188. doi:10.1038/s41401-022-00927-1
doi: 10.1038/s41401-022-00927-1 |
43 |
GUAN W L, HE Y, XU R H. Gastric cancer treatment: recent progress and future perspectives[J]. J Hematol Oncol, 2023, 16(1):57. doi:10.1186/s13045-023-01451-3
doi: 10.1186/s13045-023-01451-3 |
[1] | 刘景,冷春涛,王艳. circRNA SIPA1L1修饰牙髓干细胞来源外泌体促血管生成能力的机制[J]. 实用医学杂志, 2024, 40(9): 1211-1217. |
[2] | 陈小梅,王安奇,杨积祯,于淼. m1A/m5C/m6A/m7G调控基因预测胃癌预后及免疫关联性[J]. 实用医学杂志, 2024, 40(9): 1230-1237. |
[3] | 丁宇轩,郭沥泞,沈佳怡,王丽君. 放疗联合PD-1抑制剂及酪氨酸激酶抑制剂治疗MSS型结直肠癌肝转移疗效及安全性[J]. 实用医学杂志, 2024, 40(9): 1293-1297. |
[4] | 陈甫,刘斌,和帅军,赵勇,王伟周. 男性不育患者精液质量与精浆微量元素水平及精浆外泌体miR-184水平的关系[J]. 实用医学杂志, 2024, 40(7): 930-935. |
[5] | 肖俐,罗淑敏,徐芳,路鹏鹏,邢恩鸿,李伟华. 培养时间对小鼠树突状细胞及其外泌体免疫相关膜蛋白的影响[J]. 实用医学杂志, 2024, 40(7): 941-947. |
[6] | 程玉鑫,刘亮,董适毓,李胜超,张萌. 外泌体蛋白、mRNA及非编码RNA调节肝癌发生和发展的研究进展[J]. 实用医学杂志, 2024, 40(6): 748-755. |
[7] | 徐军红,姚红兵,王雪尧,郭威,陆才进,吴嘉兴,蒋建晖,赵东康. FOLFOX-肝动脉灌注化疗联合应用仑伐替尼和程序性死亡受体1抑制剂治疗中晚期肝癌[J]. 实用医学杂志, 2024, 40(6): 762-767. |
[8] | 刘永,程晓雷,崔香丽,唐颢,陈还珍. 轴突导向因子受体3缺陷促进化疗药物诱导的巨噬细胞泡沫化进程[J]. 实用医学杂志, 2024, 40(6): 787-795. |
[9] | 严健亮,谢泽宇,景蓉蓉,崔明. 基于机器学习利用常规检验指标建立胃癌淋巴结转移预测模型[J]. 实用医学杂志, 2024, 40(6): 844-849. |
[10] | 胡静,王旭,龚筱钦,凌锐,游涛,戴春华,田野,陈飞. 宫颈癌同步放化疗急性放射性肠炎的剂量学参数分析[J]. 实用医学杂志, 2024, 40(5): 672-676. |
[11] | 徐俐,胡珊珊,赵海明. LncRNA GNAS-AS1通过调节miR-449a/Notch1轴参与胃癌细胞的增殖和迁移[J]. 实用医学杂志, 2024, 40(4): 483-489. |
[12] | 赵健,刘松杰,张观朝,沈裕厚,李凤臣,徐兵. 着丝粒蛋白F、miR-1-3p在中晚期胃癌患者血清中的表达及与预后的相关性[J]. 实用医学杂志, 2024, 40(3): 365-370. |
[13] | 杨家明,谢诗,周海深,张家庆. 早期多原发与单发肺腺癌结节的临床特征及淋巴结转移风险对比[J]. 实用医学杂志, 2024, 40(22): 3208-3214. |
[14] | 罗青,黄金金,任婷婷,周瑞华,徐栋花,王振华,王国颖. 人脐带干细胞外泌体对人毛乳头细胞增殖的影响[J]. 实用医学杂志, 2024, 40(20): 2828-2834. |
[15] | 徐俊,王晓丽,倪静怡,张娣娣. 维迪西妥单抗治疗晚期胃癌的临床疗效及安全性[J]. 实用医学杂志, 2024, 40(20): 2913-2917. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||