1 |
FAZIO M, DEL FABRO V, PARRINELLO N L, et al. Multiple myeloma in 2023 ways: From trials to real life [J]. Curr Oncol, 2023, 30(11): 9710-9733. doi:10.3390/curroncol30110705
doi: 10.3390/curroncol30110705
|
2 |
GARFALL A L. New biological therapies for multiple myeloma [J]. Annu Rev Med, 2024, 75: 13-29. doi:10.1146/annurev-med-050522-033815
doi: 10.1146/annurev-med-050522-033815
|
3 |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi:10.3322/caac.21708
doi: 10.3322/caac.21708
|
4 |
WU S, ZHU J, WU G, et al. 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 Pathway [J]. Oxid Med Cell Longev, 2022, 2022: 3027514. doi:10.1155/2022/3027514
doi: 10.1155/2022/3027514
|
5 |
TSAI Y, XIA C, SUN Z. The Inhibitory effect of 6-Gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro [J]. Front Pharmacol, 2020, 11: 598555. doi:10.3389/fphar.2020.598555
doi: 10.3389/fphar.2020.598555
|
6 |
BHASKAR A, KUMARI A, SINGH M, et al. [6]-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis [J]. Int Immunopharmacol, 2020, 87: 106809. doi:10.1016/j.intimp.2020.106809
doi: 10.1016/j.intimp.2020.106809
|
7 |
HAN J J, LI X, YE Z Q, et al. Treatment with 6-Gingerol regulates dendritic cell activity and ameliorates the severity of experimental autoimmune encephalomyelitis [J]. Mol Nutr Food Res, 2019, 63(18): e1801356. doi:10.1002/mnfr.201801356
doi: 10.1002/mnfr.201801356
|
8 |
LI A, ZHAO M, YANG Z, et al. 6-Gingerol alleviates placental injury in preeclampsia by inhibiting oxidative stress via BNIP3/LC3 signaling-mediated trophoblast mitophagy [J]. Front Pharmacol, 2023, 14: 1243734. doi:10.3389/fphar.2023.1243734
doi: 10.3389/fphar.2023.1243734
|
9 |
GUNAWAN S, MUNIKA E, WULANDARI E T, et al. 6-gingerol ameliorates weight gain and insulin resistance in metabolic syndrome rats by regulating adipocytokines [J]. Saudi Pharm J, 2023, 31(3): 351-358. doi:10.1016/j.jsps.2023.01.003
doi: 10.1016/j.jsps.2023.01.003
|
10 |
KIM M J, KU J M, CHOI Y J, et al. Reduced HIF-1α Stability Induced by 6-Gingerol Inhibits Lung Cancer Growth through the Induction of Cell Death [J]. Molecules, 2022, 27(7): 2106. doi:10.3390/molecules27072106
doi: 10.3390/molecules27072106
|
11 |
ZHANG H, KIM E, YI J, et al. [6]-Gingerol Suppresses Oral Cancer Cell Growth by Inducing the Activation of AMPK and Suppressing the AKT/mTOR Signaling Pathway [J]. In Vivo, 2021, 35(6): 3193-3201. doi:10.21873/invivo.12614
doi: 10.21873/invivo.12614
|
12 |
CHOI N R, CHOI W G, KWON M J, et al. [6]-Gingerol induces Caspase-Dependent Apoptosis in Bladder Cancer cells via MAPK and ROS Signaling [J]. Int J Med Sci, 2022, 19(7): 1093-1102. doi:10.7150/ijms.73077
doi: 10.7150/ijms.73077
|
13 |
SALARI Z, KHOSRAVI A, POURKHANDANI E, et al. The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo [J]. Front Oncol, 2023, 13: 1098429. doi:10.3389/fonc.2023.1098429
doi: 10.3389/fonc.2023.1098429
|
14 |
AL-ODAT O S, GUIRGUIS D A, SCHMALBACH N K, et al. Autophagy and apoptosis: current challenges of treatment and drug resistance in multiple myeloma [J]. Int J Mol Sci, 2022, 24(1): 644. doi:10.3390/ijms24010644
doi: 10.3390/ijms24010644
|
15 |
CZABOTAR P E, LESSENE G, STRASSER A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy [J]. Nat Rev Mol Cell Biol, 2014, 15(1): 49-63. doi:10.1038/nrm3722
doi: 10.1038/nrm3722
|
16 |
LOPEZ J, TAIT S W. Mitochondrial apoptosis: killing cancer using the enemy within [J]. Br J Cancer, 2015, 112(6): 957-962. doi:10.1038/bjc.2015.85
doi: 10.1038/bjc.2015.85
|
17 |
DREL V R, SHYMANS'KYĬ I O, SYBIRNA N O, et al. Role of PARP and protein poly-ADP-ribosylation process in regulation of cell functions [J]. Ukr Biokhim Zh (1999), 2011, 83(6): 5-34.
|
18 |
ZHANG Y, YANG X, ZHOU H, et al. BIBR1532 inhibits proliferation and enhances apoptosis in multiple myeloma cells by reducing telomerase activity [J]. PeerJ, 2023, 11: e16404. doi:10.7717/peerj.16404
doi: 10.7717/peerj.16404
|
19 |
KERROS C, CAVEY T, SOLA B, et al. Somatostatin and opioid receptors do not regulate proliferation or apoptosis of the human multiple myeloma U266 cells [J]. J Exp Clin Cancer Res, 2009, 28(1): 77. doi:10.1186/1756-9966-28-77
doi: 10.1186/1756-9966-28-77
|
20 |
SHEN W, ZHAO Y, CHEN H, et al. M3, a natural lignan xyloside, exhibits potent anticancer activity in HCT116 cells [J]. Oncol Lett, 2019, 17(2): 2117-2122.
|
21 |
ZHANG Y, QIAN J, JIANG M, et al. LTe2 induces cell apoptosis in multiple myeloma by suppressing AKT phosphorylation at Thr308 and Ser473 [J]. Front Oncol, 2023, 13: 1269670. doi:10.3389/fonc.2023.1269670
doi: 10.3389/fonc.2023.1269670
|
22 |
SAADOUNE C, NOUADI B, HAMDAOUI H, et al. Multiple Myeloma: Bioinformatic Analysis for Identification of Key Genes and Pathways [J]. Bioinform Biol Insights, 2022, 16: 11779322221115545. doi:10.1177/11779322221115545
doi: 10.1177/11779322221115545
|
23 |
ENGELAND K. Cell cycle regulation: p53-p21-RB signaling [J]. Cell Death Differ, 2022, 29(5): 946-960. doi:10.1038/s41418-022-00988-z
doi: 10.1038/s41418-022-00988-z
|
24 |
MASSÓ-VALLÉS D, SOUCEK L. Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc [J]. Cells, 2020, 9(4): 883. doi:10.3390/cells9040883
doi: 10.3390/cells9040883
|
25 |
ADIKESAVAN M, ATHIRAJA P, DIVAKAR M B B. Investigation on the anticancer activity of [6]-gingerol of zingiber officinale and its structural analogs against skin cancer [J]. Curr Comput Aided Drug Des, 2024, 20(4): 367-373. doi:10.2174/1573409919666230418095105
doi: 10.2174/1573409919666230418095105
|
26 |
KHAN H, AZAD I, ARIF Z, et al. Structure based docking and biological evaluation towards exploring potential anti-cancerous and apoptotic activity of 6-Gingerol against human prostate carcinoma cells [J]. BMC Complement Med Ther, 2024, 24(1): 8. doi:10.1186/s12906-023-04269-1
doi: 10.1186/s12906-023-04269-1
|
27 |
LI B, ZU M, JIANG A, et al. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation [J]. Biomaterials, 2024, 307: 122530. doi:10.1016/j.biomaterials.2024.122530
doi: 10.1016/j.biomaterials.2024.122530
|
28 |
EDIRIWEERA M K, TENNEKOON K H, SAMARAKOON S R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance [J]. Semin Cancer Biol, 2019, 59: 147-160. doi:10.1016/j.semcancer.2019.05.012
doi: 10.1016/j.semcancer.2019.05.012
|
29 |
ISA R, HORINAKA M, TSUKAMOTO T, et al. The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma [J]. Int J Mol Sci, 2022, 23(6): 2919. doi:10.3390/ijms23062919
doi: 10.3390/ijms23062919
|
30 |
LU Q, YANG D, LI H, et al. Multiple myeloma: signaling pathways and targeted therapy [J]. Mol Biomed, 2024, 5(1): 25. doi:10.1186/s43556-024-00188-w
doi: 10.1186/s43556-024-00188-w
|
31 |
XU S, ZHANG H, LIU T, et al. 6-Gingerol induces cell-cycle G1-phase arrest through AKT-GSK 3β-cyclin D1 pathway in renal-cell carcinoma [J]. Cancer Chemother Pharmacol, 2020, 85(2): 379-390. doi:10.1007/s00280-019-03999-9
doi: 10.1007/s00280-019-03999-9
|