1 |
GILFILLAN M, DAS P, SHAH D, et al. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia [J]. Respir Res, 2020, 21(1): 92. doi:10.1186/s12931-020-01353-9
doi: 10.1186/s12931-020-01353-9
|
2 |
ZHANG X, CHU X, GONG X, et al. The expression of miR-125b in Nrf2-silenced A549 cells exposed to hyperoxia and its relationship with apoptosis [J]. J Cell Mol Med, 2020, 24(1): 965-972. doi:10.1111/jcmm.14808
doi: 10.1111/jcmm.14808
|
3 |
早产儿支气管肺发育不良调查协作组. 早产儿支气管肺发育不良发生率及高危因素的多中心回顾调查分析[J]. 中华儿科杂志, 2011, 49(9):655-662.
|
4 |
LEARY S, DAS P, PONNALAGU D, et al. Genetic Strain and Sex Differences in a Hyperoxia-Induced Mouse Model of Varying Severity of Bronchopulmonary Dysplasia [J]. Am J Pathol, 2019, 189(5): 999-1014. doi:10.1016/j.ajpath.2019.01.014
doi: 10.1016/j.ajpath.2019.01.014
|
5 |
CYR-DEPAUW C, COOK D P, MIŽIK I, et al. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells [J]. Am J Respir Crit Care Med, 2024,210(6):814-827. doi:10.1164/rccm.202310-1975oc
doi: 10.1164/rccm.202310-1975oc
|
6 |
SDRIMAS K, KOUREMBANAS S. MSC microvesicles for the treatment of lung disease: A new paradigm for cell-free therapy [J]. Antioxid Redox Signal, 2014, 21(13): 1905-1915. doi:10.1089/ars.2013.5784
doi: 10.1089/ars.2013.5784
|
7 |
AO M, MA H, GUO M, et al. Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia [J]. Hum Cell, 2024, 37(2): 381-393. doi:10.1007/s13577-023-01018-x
doi: 10.1007/s13577-023-01018-x
|
8 |
YANG Y, HUANG H, LI Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis [J]. Front Pharmacol, 2022, 13: 928933. doi:10.3389/fphar.2022.928933
doi: 10.3389/fphar.2022.928933
|
9 |
VYAS N, DHAWAN J. Exosomes: mobile platforms for targeted and synergistic signaling across cell boundaries [J]. Cell Mol Life Sci, 2017, 74(9): 1567-1576. doi:10.1007/s00018-016-2413-9
doi: 10.1007/s00018-016-2413-9
|
10 |
LAFFEY J G, MATTHAY M A. Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value [J]. Am J Respir Crit Care Med, 2017, 196(3): 266-273. doi:10.1164/rccm.201701-0107cp
doi: 10.1164/rccm.201701-0107cp
|
11 |
OMAR S A, ABDUL-HAFEZ A, IBRAHIM S, et al. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns [J]. Cells, 2022, 11(8):1275. doi:10.3390/cells11081275
doi: 10.3390/cells11081275
|
12 |
冯帮海, 任颖聪, 袁平, 等. Ⅱ型肺泡上皮细胞来源外泌体miR-21-5p调控上皮钠离子通道减轻高氧性急性肺损伤 [J]. 陆军军医大学学报,2023, 45(21): 2222-2230.
|
13 |
WANG Y, XIE W, FENG Y, et al. Epithelial‑derived exosomes promote M2 macrophage polarization via Notch2/SOCS1 during mechanical ventilation [J]. Int J Mol Med, 2022, 50(1):96. doi:10.3892/ijmm.2022.5152
doi: 10.3892/ijmm.2022.5152
|
14 |
QUAN Y, WANG Z, GONG L, et al. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type II cells by using PTEN to orchestrate the PI3K/Akt signaling [J].Stem Cell Res Ther, 2017, 8(1): 138. doi:10.1186/s13287-017-0586-2
doi: 10.1186/s13287-017-0586-2
|
15 |
月小飞, 梅花, 宋丹, 等. 高氧诱导支气管肺发育不良模型新生大鼠肺组织中miR-21-5p的表达 [J]. 中国医科大学学报,2020, 49(7): 624-627,635.
|
16 |
WU Y, ZHANG Z, LI J, et al. Mechanism of Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying miR-21-5p in Hyperoxia-Induced Lung Injury [J]. Stem Cell Rev Rep, 2022, 18(3): 1007-1024. doi:10.1007/s12015-021-10311-x
doi: 10.1007/s12015-021-10311-x
|
17 |
侯勇哲, 张琴, 赵霄晨, 等. 间充质干细胞来源的胞外囊泡在急性肺损伤治疗中的研究进展[J]. 实用医学杂志,2023, 39(3): 390-394. doi:10.3969/j.issn.1006-5725.2023.03.023
doi: 10.3969/j.issn.1006-5725.2023.03.023
|
18 |
周先贵, 蒋艳, 韩梅, 等. miR21-5p靶向转录激活蛋白STAT3减轻高氧性急性肺损伤[J]. 实用医学杂志,2023, 39(1): 21-27.
|
19 |
LIU J, SONG K, LIN B, et al. The suppression of HSPA8 attenuates NLRP3 ubiquitination through SKP2 to promote pyroptosis in sepsis-induced lung injury [J]. Cell Biosci, 2024, 14(1): 56. doi:10.1186/s13578-024-01239-z
doi: 10.1186/s13578-024-01239-z
|
20 |
INUI N, SAKAI S, KITAGAWA M. Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway [J]. Int J Mol Sci, 2021,22(11):6107. doi:10.3390/ijms22116107
doi: 10.3390/ijms22116107
|
21 |
ZHAO G, WEINER A I, NEUPAUER K M, et al. Regeneration of the pulmonary vascular endothelium after viral pneumonia requires COUP-TF2 [J]. Sci Adv, 2020, 6(48):eabc4493. doi:10.1126/sciadv.abc4493
doi: 10.1126/sciadv.abc4493
|
22 |
PERRONE S, MANTI S, BUTTARELLI L, et al. Vascular Endothelial Growth Factor as Molecular Target for Bronchopulmonary Dysplasia Prevention in Very Low Birth Weight Infants [J]. Int J Mol Sci, 2023, 24(3):2729. doi:10.3390/ijms24032729
doi: 10.3390/ijms24032729
|
23 |
王玲,封志纯,吕回.血管内皮生长因子和血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及其对肺发育的影响[J].实用医学杂志,2014,30(4):525-528.
|
24 |
ZHU N, WANG H, WEI J, et al. NR2F2 regulates bone marrow-derived mesenchymal stem cell-promoted proliferation of Reh cells [J]. Mol Med Rep, 2016, 14(2): 1351-1356. doi:10.3892/mmr.2016.5389
doi: 10.3892/mmr.2016.5389
|