实用医学杂志 ›› 2022, Vol. 38 ›› Issue (18): 2266-2271.doi: 10.3969/j.issn.1006⁃5725.2022.18.004

• 专题报道 • 上一篇    下一篇

基于OPLS⁃DA 在乳腺癌诊断中的价值 和人工神经网络算法研究血细胞参数

朱小飞 钱世宁 曹慧玲 吴玲   

  1. 南京中医药大学附属医院医学检验科(南京 210029)

  • 出版日期:2022-09-25 发布日期:2022-09-25
  • 通讯作者: 吴玲 E⁃mail:HHV9@sina.com
  • 基金资助:
    国家自然科学基金项目(编号:81503368)

Study on the value of blood cell parameters in the diagnosis of breast cancer based on OPLS⁃DA and artifi⁃ cial neural network algorithm 

 ZHU Xiaofei,QIAN Shining,CAO Huiling,WU ling.    

  1. Department of Clinical Laboratory Affiliated Hospital of Nanjing University of Chinese Medicine,Nanjing 210029,China

  • Online:2022-09-25 Published:2022-09-25
  • Contact: WU Ling E⁃mail:HHV9@sina.com

摘要:

目的 运用 OPLS⁃DA 和人工神经网络算法发掘和研究血细胞参数对乳腺癌的诊断价值。 方法 收集乳腺癌患者和健康女性的血细胞参数,通过 OPLS⁃DA 发掘两者之间的主要差异血细胞参数; 通过 ROC 法计算主要差异参数对乳腺癌诊断的灵敏度和特异性;基于主要差异参数,建立神经网络诊断 模型,用于乳腺癌的诊断预测。结果 OPLS⁃DA 提示基于血细胞参数,乳腺癌患者和健康女性之间存在 显著差异,平均血小板体积(MPV)、嗜碱性粒细胞绝对值(BA#)、血小板计数(PLT)、平均红细胞体积 MCV)、红细胞计数(RBC)和淋巴细胞绝对值(LY#)是两组之间的主要差异参数。上述参数对乳腺癌诊 断特异性分别为 0.5640.9830.6220.6740.878 0.762,灵敏度分别为 0.8190.6140.6180.5610.393 0.514,ROC 曲线下面积(AUC)分别为 0.7730.7930.6570.6490.643 0.635。基于 6 种主要参数,通过 逆向传播算法经16 862次迭代建立人工神经网络模型,对乳腺癌预测的灵敏度为0.941 2,特异性为0.795 5 结论 本文通过 OPLS⁃DA 算法发掘了乳腺癌患者和健康女性之间的主要差异血细胞参数,成功建立了人 工神经网络的乳腺癌预测模型,对乳腺癌的诊断筛查具有一定价值。

关键词:

乳腺癌, 血细胞参数, OPLS?DA, 人工神经网络, 诊断

Abstract:

Objective Investigate the value of blood cell parameters in breast cancer diagnosis by OPLS⁃DA and artificial neural network algorithm. Methods Blood cell parameters from breast cancer patients and healthy females were collected. The OPLS ⁃DA algorithm was used to calculate the significant differences between breast cancer patients and normal females. ROC was used to assess the diagnostic efficacy of the prominent parameters including sensitivity and specificity. A prediction model for breast cancer diagnosis is established by neural network algorithm based on the prominent different parameters. Results According to the OPLS⁃DA analysis,there are significant differences in blood cell parameters between breast cancer patients and healthy women. MPV,BA# PLT,MCV,RBC and LY# were the main differential parameters between the two groups. The specificity of these parameters for breast cancer diagnosis is 0.564,0.983,0.622,0.674,0.878 and 0.762 respectively;the sensitivity is 0.819,0.614,0.618,0.561,0.393 and 0.393 respectively;and the AUC is 0.773,0.793,0.657,0.649,0.643 and 0.635 respectively. Based on MPV,BA#,PLT,MCV,RBC and LY#,the artificial neural network model was estab⁃ lished by 16 862 iterations,and the sensitivity and specificity of breast cancer prediction were 0.941 2 and 0.795 5 respectively. Conclusion The OPLS⁃DA algorithm is used in this study to investigate the main differential parame⁃ ters of blood cell parameters between breast cancer patients and healthy women. Breast cancer prediction model based on artificial neural network has been successfully established,which is of certain value for breast cancer screening. 

Key words:

breast cancer, blood cell parameter, OPLS?DA, artificial neural network, diagnosis