实用医学杂志 ›› 2025, Vol. 41 ›› Issue (23): 3786-3793.doi: 10.3969/j.issn.1006-5725.2025.23.023
• 综述 • 上一篇
金铭1,方思瞳1,孔令军1,2,朱清广2,3,房敏1,2(
)
收稿日期:2025-07-08
出版日期:2025-12-10
发布日期:2025-12-18
通讯作者:
房敏
E-mail:tn0510@shutcm.edu.cn;fm-tn0510@shutcm.edu.cn
基金资助:
Ming JIN1,Sitong FANG1,Lingjun KONG1,2,Qingguang ZHU2,3,Min. FANG1,2(
)
Received:2025-07-08
Online:2025-12-10
Published:2025-12-18
Contact:
Min. FANG
E-mail:tn0510@shutcm.edu.cn;fm-tn0510@shutcm.edu.cn
摘要:
慢性疲劳综合征(chronic fatigue syndrome,CFS)的发病机制尚未有准确定论,色氨酸代谢途径与CFS的发生发展有着密不可分的关系,但具体机制仍不明确。本文聚焦于CFS患者色氨酸代谢产物及酶在外周及中枢的变化趋势与临床症状之间的相关性,重点探究色氨酸途径在肠-脑轴(gut-brain axis,GBA)中的作用,并深入分析色氨酸代谢物在CFS病程中的调控效应,探究色氨酸代谢途径与CFS之间存在的联系及驱动机制,以取得新的思路及突破。
中图分类号:
金铭,方思瞳,孔令军,朱清广,房敏. 色氨酸代谢对慢性疲劳综合征微生物-肠-脑通讯影响的研究进展[J]. 实用医学杂志, 2025, 41(23): 3786-3793.
Ming JIN,Sitong FANG,Lingjun KONG,Qingguang ZHU,Min. FANG. The Role of tryptophan metabolism in modulating microbiota⁃gut⁃brain communication in chronic fatigue syndrome[J]. The Journal of Practical Medicine, 2025, 41(23): 3786-3793.
| [1] |
LIM E J, AHN Y C, JANG E S, et al. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME)[J]. J Transl Med, 2020, 18(1): 100. doi:10.1186/s12967-020-02269-0
doi: 10.1186/s12967-020-02269-0 |
| [2] | 伍侨, 高静, 柏丁兮, 等. 中国人群慢性疲劳综合征患病率的Meta分析[J]. 右江医学, 2020, 48(10): 727-735. |
| [3] |
ARRON H E, MARSH B D, KELL D B, et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The biology of a neglected disease[J]. Front Immunol, 2024, 15: 1386607. doi:10.3389/fimmu.2024.1386607
doi: 10.3389/fimmu.2024.1386607 |
| [4] |
LEE J S, KANG J Y, PARK S Y, et al. Central 5-HTergic hyperactivity induces myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-like pathophysiology[J]. J Transl Med, 2024, 22(1): 34. doi:10.1186/s12967-023-04808-x
doi: 10.1186/s12967-023-04808-x |
| [5] |
AGUS A, PLANCHAIS J, SOKOL H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease[J]. Cell Host Microbe, 2018, 23(6): 716-724. doi:10.1016/j.chom.2018.05.003
doi: 10.1016/j.chom.2018.05.003 |
| [6] |
HSU C Y, AHMAD I, MAYA R W, et al. The potential therapeutic approaches targeting gut health in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A narrative review[J]. J Transl Med, 2025, 23(1): 530. doi:10.1186/s12967-025-06527-x
doi: 10.1186/s12967-025-06527-x |
| [7] |
MA N, HE T, JOHNSTON L J, et al. Host-microbiome interactions: The aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling[J]. Gut Microbes, 2020, 11(5): 1203-1219. doi:10.1080/19490976.2020.1758008
doi: 10.1080/19490976.2020.1758008 |
| [8] |
GAO K, MU C L, FARZI A, et al. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain[J]. Adv Nutr, 2020, 11(3): 709-723. doi:10.1093/advances/nmz127
doi: 10.1093/advances/nmz127 |
| [9] |
AHMED H S. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential[J]. Mol Neurobiol, 2025, 62(3): 3813-3832. doi:10.1007/s12035-024-04506-9
doi: 10.1007/s12035-024-04506-9 |
| [10] |
SU X, GAO Y, YANG R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis[J]. Cells, 2022, 11(15):2296. doi:10.3390/cells11152296
doi: 10.3390/cells11152296 |
| [11] |
LIU Y, HOU Y, WANG G, et al. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay[J]. Trends Endocrinol Metab, 2020, 31(11): 818-834. doi:10.1016/j.tem.2020.02.012
doi: 10.1016/j.tem.2020.02.012 |
| [12] |
CERVENKA I, AGUDELO L Z, RUAS J L. Kynurenines: Tryptophan's metabolites in exercise, inflammation, and mental health[J]. Science, 2017, 357(6349): eaaf9794. doi:10.1126/science.aaf9794
doi: 10.1126/science.aaf9794 |
| [13] |
SAVITZ J, DREVETS W C, WURFEL B E, et al. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder[J]. Brain Behav Immun, 2015, 46: 55-59. doi:10.1016/j.bbi.2015.02.007
doi: 10.1016/j.bbi.2015.02.007 |
| [14] |
DEHHAGHI M, PANAHI H K S, KAVYANI B, et al. The Role of Kynurenine Pathway and NAD(+) Metabolism in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome[J]. Aging Dis, 2022, 13(3): 698-711. doi:10.14336/ad.2021.0824
doi: 10.14336/ad.2021.0824 |
| [15] |
SATHYASAIKUMAR K V, PéREZ DE LA CRUZ V, PINEDA B, et al. Cellular Localization of Kynurenine 3-Monooxygenase in the Brain: Challenging the Dogma[J]. Antioxidants (Basel), 2022, 11(2):315. doi:10.3390/antiox11020315
doi: 10.3390/antiox11020315 |
| [16] |
BANSAL Y, SINGH R, SODHI R K, et al. Kynurenine monooxygenase inhibition and associated reduced quinolinic acid reverses depression-like behaviour by upregulating Nrf2/ARE pathway in mouse model of depression: In-vivo and In-silico studies[J]. Neuropharmacology, 2022, 215: 109169. doi:10.1016/j.neuropharm.2022.109169
doi: 10.1016/j.neuropharm.2022.109169 |
| [17] |
EL-MERAHBI R, LöFFLER M, MAYER A, et al. The roles of peripheral serotonin in metabolic homeostasis[J]. FEBS Lett, 2015, 589(15): 1728-1734. doi:10.1016/j.febslet.2015.05.054
doi: 10.1016/j.febslet.2015.05.054 |
| [18] |
CHAVES-FILHO A J M, MACEDO D S, DE LUCENA D F, et al. Shared microglial mechanisms underpinning depression and chronic fatigue syndrome and their comorbidities[J]. Behav Brain Res, 2019, 372: 111975. doi:10.1016/j.bbr.2019.111975
doi: 10.1016/j.bbr.2019.111975 |
| [19] |
NOWAK D B, TABORDA-BEJARANO J P, CHAURE F J, et al. Understanding Microglia in Mesocorticolimbic Circuits: Implications for the Study of Chronic Stress and Substance Use Disorders[J]. Cells, 2025, 14(13):1014. doi:10.3390/cells14131014
doi: 10.3390/cells14131014 |
| [20] |
FUNG C, VENNEMAN T, HOLLAND A M, et al. Nutrients activate distinct patterns of small-intestinal enteric neurons[J]. Nature, 2025, 644(8078): 1069-1077. doi:10.1038/s41586-025-09228-z
doi: 10.1038/s41586-025-09228-z |
| [21] |
CHEN L, HUANG S, WU X, et al. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities[J]. Clin Transl Med, 2024, 14(7): e1750. doi:10.1002/ctm2.1750
doi: 10.1002/ctm2.1750 |
| [22] |
CHEN Y, GAO T, BAI J, et al. Ren-Shen-Bu-Qi decoction alleviates exercise fatigue through activating PI3K/AKT/Nrf2 pathway in mice[J]. Chin Med, 2024, 19(1): 154. doi:10.1186/s13020-024-01027-4
doi: 10.1186/s13020-024-01027-4 |
| [23] |
BAHAR M E, KIM H J, KIM D R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455. doi:10.1038/s41392-023-01705-z
doi: 10.1038/s41392-023-01705-z |
| [24] |
LIU J, PEI C, JIA N, et al. Preconditioning with Ginsenoside Rg3 mitigates cardiac injury induced by high-altitude hypobaric hypoxia exposure in mice by suppressing ferroptosis through inhibition of the RhoA/ROCK signaling pathway[J]. J Ethnopharmacol, 2025, 337(Pt 2): 118861. doi:10.1016/j.jep.2024.118861
doi: 10.1016/j.jep.2024.118861 |
| [25] |
SOTO C, ORIHUELA L P, APOSTOL G, et al. Running Reverses Chronic Stress-Induced Changes in Serotonergic Modulation of Hippocampal Granule Cells and Altered Behavioural Responses[J]. Eur J Neurosci, 2025, 61(7): e70084. doi:10.1111/ejn.70084
doi: 10.1111/ejn.70084 |
| [26] | NIKOUI V, JAVADI-PAYDAR M, SALEHI M, et al. Protective Effects of Lithium on Sumatriptan-Induced Memory Impairment in Mice[J]. Acta Med Iran, 2016, 54(4): 226-232. |
| [27] |
ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9(1): 3294. doi:10.1038/s41467-018-05470-4
doi: 10.1038/s41467-018-05470-4 |
| [28] |
LEE J H, WOOD T K, LEE J. Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trends Microbiol, 2015, 23(11): 707-718. doi:10.1016/j.tim.2015.08.001
doi: 10.1016/j.tim.2015.08.001 |
| [29] |
WEI W, LIU Y, HOU Y, et al. Psychological stress-induced microbial metabolite indole-3-acetate disrupts intestinal cell lineage commitment[J]. Cell Metab, 2024, 36(3): 466-483.e7. doi:10.1016/j.cmet.2023.12.026
doi: 10.1016/j.cmet.2023.12.026 |
| [30] |
JIANG Y, YANG J, XIA L, et al. Gut Microbiota-Tryptophan Metabolism-GLP-1 Axis Participates in β-Cell Regeneration Induced by Dapagliflozin[J]. Diabetes, 2024, 73(6): 926-940. doi:10.2337/db23-0553
doi: 10.2337/db23-0553 |
| [31] |
ROTHHAMMER V, MASCANFRONI I D, BUNSE L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor[J]. Nat Med, 2016, 22(6): 586-597. doi:10.1038/nm.4106
doi: 10.1038/nm.4106 |
| [32] |
SEO S-K, KWON B. Immune regulation through tryptophan metabolism[J]. Exp Mol Med, 2023, 55(7): 1371-1379. doi:10.1038/s12276-023-01028-7
doi: 10.1038/s12276-023-01028-7 |
| [33] | GONZALEZ-MERCADO V J, MARRERO S, PéREZ-SANTIAGO J, et al. Association of Radiotherapy-Related Intestinal Injury and Cancer-related Fatigue: A Brief Review and Commentary[J]. P R Health Sci J, 2021, 40(1): 6-11. |
| [34] |
MARTíN F, BLANCO-SUáREZ M, ZAMBRANO P, et al. Increased gut permeability and bacterial translocation are associated with fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: Implications for disease-related biomarker discovery[J]. Front Immunol, 2023, 14: 1253121. doi:10.3389/fimmu.2023.1253121
doi: 10.3389/fimmu.2023.1253121 |
| [35] |
NAGY-SZAKAL D, BARUPAL D K, LEE B, et al. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics[J]. Sci Rep, 2018,8(1):10056. doi:10.1038/s41598-018-28477-9
doi: 10.1038/s41598-018-28477-9 |
| [36] |
MISHIMA Y, ISHIHARA S. Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome[J]. Int J Mol Sci, 2021, 22(19):10235. doi:10.3390/ijms221910235
doi: 10.3390/ijms221910235 |
| [37] |
AGIRMAN G, HSIAO E Y. SnapShot: The microbiota-gut-brain axis[J]. Cell, 2021, 184(9):2524-2524. doi:10.1016/j.cell.2021.03.022
doi: 10.1016/j.cell.2021.03.022 |
| [38] |
DE VOS W M, TILG H, VAN HUL M, et al. Gut microbiome and health: Mechanistic insights[J]. Gut, 2022, 71(5): 1020-1032. doi:10.1136/gutjnl-2021-326789
doi: 10.1136/gutjnl-2021-326789 |
| [39] |
KEARNS R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders[J]. Cell Mol Neurobiol, 2024, 44(1): 64. doi:10.1007/s10571-024-01496-z
doi: 10.1007/s10571-024-01496-z |
| [40] | 铁子慧, 何培坤, 李彦颐, 等. 帕金森病轻度认知障碍患者脑结构网络改变与肠道菌群的关系[J]. 实用医学杂志, 2024, 40(24): 3438-3445. |
| [41] |
STALLMACH A, QUICKERT S, PUTA C, et al. The gastrointestinal microbiota in the development of ME/CFS: A critical view and potential perspectives[J]. Front Immunol, 2024, 15: 1352744. doi:10.3389/fimmu.2024.1352744
doi: 10.3389/fimmu.2024.1352744 |
| [42] | 张裕祥, 玛依拉·艾尼瓦尔, 玛依拉·阿不都克力木. 肠道菌群通过Treg/IDO信号通路参与动脉粥样硬化进展的实验研究[J]. 中西医结合心脑血管病杂志, 2024, 22(18): 3316-3320. |
| [43] |
GE X, ZHENG M, HU M, et al. Butyrate ameliorates quinolinic acid-induced cognitive decline in obesity models[J]. J Clin Invest, 2023, 133(4):e154612. doi:10.1172/jci154612
doi: 10.1172/jci154612 |
| [44] |
SUN P, WANG M, LIU Y X, et al. High-fat diet-disturbed gut microbiota-colonocyte interactions contribute to dysregulating peripheral tryptophan-kynurenine metabolism[J]. Microbiome, 2023, 11(1): 154. doi:10.1186/s40168-023-01606-x
doi: 10.1186/s40168-023-01606-x |
| [45] |
DEYAERT S, POPPE J, DAI VU L, et al. Functional Muffins Exert Bifidogenic Effects along with Highly Product-Specific Effects on the Human Gut Microbiota Ex Vivo[J]. Metabolites, 2024, 14(9): 497. doi:10.3390/metabo14090497
doi: 10.3390/metabo14090497 |
| [46] |
FAN Y, SONG Q, LI S, et al. Protective Role of Indole-3-Acetic Acid Against Salmonella Typhimurium: Inflammation Moderation and Intestinal Microbiota Restoration[J]. Microorganisms, 2024, 12(11): 2342. doi:10.3390/microorganisms12112342
doi: 10.3390/microorganisms12112342 |
| [47] |
PETRUT S M, BRAGARU A M, MUNTEANU A E, et al. Gut over Mind: Exploring the Powerful Gut-Brain Axis[J]. Nutrients, 2025, 17(5): 842. doi:10.3390/nu17050842
doi: 10.3390/nu17050842 |
| [48] |
LI K, WEI W, XU C, et al. Prebiotic inulin alleviates anxiety and depression-like behavior in alcohol withdrawal mice by modulating the gut microbiota and 5-HT metabolism[J]. Phytomedicine, 2024, 135: 156181. doi:10.1016/j.phymed.2024.156181
doi: 10.1016/j.phymed.2024.156181 |
| [49] | WALITT B, SINGH K, LAMUNION S R, et al. Deep phenotyping of post-infectious myalgic encephalomyelitis/chronic fatigue syndrome[J]. Nat Commun, 2024, 15(1): 907. |
| [50] |
LEONG K H, YIP H T, KUO C F, et al. Treatments of chronic fatigue syndrome and its debilitating comorbidities: A 12-year population-based study[J]. J Transl Med, 2022, 20(1): 268. doi:10.1186/s12967-022-03461-0
doi: 10.1186/s12967-022-03461-0 |
| [51] | 顾元嘉, 谢芳芳, 管翀, 等. 肠道菌群对慢性疲劳综合征中枢神经系统的调控机制[J]. 世界中医药, 2023, 18(21): 3109-3112,3117. |
| [52] |
GAO L, GAO T, ZENG T, et al. Blockade of Indoleamine 2, 3-dioxygenase 1 ameliorates hippocampal neurogenesis and BOLD-fMRI signals in chronic stress precipitated depression[J]. Aging (Albany NY), 2021, 13(4): 5875-5891. doi:10.18632/aging.202511
doi: 10.18632/aging.202511 |
| [53] |
YU F, BILBERG A, DALGAS U, et al. Fatigued patients with multiple sclerosis can be discriminated from healthy controls by the recordings of a newly developed measurement system (FAMOS): A pilot study[J]. Disabil Rehabil Assist Technol, 2013, 8(1): 77-83. doi:10.3109/17483107.2012.680941
doi: 10.3109/17483107.2012.680941 |
| [54] |
MA L, WANG H B, HASHIMOTO K. The vagus nerve: An old but new player in brain-body communication[J]. Brain Behav Immun, 2025, 124: 28-39. doi:10.1016/j.bbi.2024.11.023
doi: 10.1016/j.bbi.2024.11.023 |
| [55] |
ZHANG T, YUE Y, LI C, et al. Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model[J]. Int J Mol Sci, 2024, 25(14):7831. doi:10.3390/ijms25147831
doi: 10.3390/ijms25147831 |
| [56] |
STAMPER C E, HASSELL J E J R, KAPITZ A J, et al. Activation of 5-HT(1A) receptors in the rat dorsomedial hypothalamus inhibits stress-induced activation of the hypothalamic-pituitary-adrenal axis[J]. Stress, 2017, 20(2): 223-230. doi:10.1080/10253890.2017.1301426
doi: 10.1080/10253890.2017.1301426 |
| [57] |
ZHANG Y D, WANG L N. Research progress in the treatment of chronic fatigue syndrome through interventions targeting the hypothalamus-pituitary-adrenal axis[J]. Front Endocrinol (Lausanne), 2024, 15: 1373748. doi:10.3389/fendo.2024.1373748
doi: 10.3389/fendo.2024.1373748 |
| [58] |
SLACK J, NOH H I, LEDBETTER L, et al. The association between the gut microbiome and fatigue in individuals living with cancer: A systematic review[J]. Support Care Cancer, 2024, 32(4): 267. doi:10.1007/s00520-024-08468-5
doi: 10.1007/s00520-024-08468-5 |
| [59] |
CRYAN J F, O'RIORDAN K J, SANDHU K, et al. The gut microbiome in neurological disorders[J]. Lancet Neurol, 2020, 19(2): 179-194. doi:10.1016/s1474-4422(19)30356-4
doi: 10.1016/s1474-4422(19)30356-4 |
| [60] |
CASALI B T, REED-GEAGHAN E G. Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease[J]. Cells, 2021, 10(4): 957. doi:10.3390/cells10040957
doi: 10.3390/cells10040957 |
| [61] |
GROVEN N, REITAN S K, FORS E A, et al. Kynurenine metabolites and ratios differ between Chronic Fatigue Syndrome, Fibromyalgia, and healthy controls[J]. Psychoneuroendocrinology, 2021, 131: 105287. doi:10.1016/j.psyneuen.2021.105287
doi: 10.1016/j.psyneuen.2021.105287 |
| [62] | Myalgic encephalomyelitis or encephalopathy)/chronic fatigue syndrome: Diagnosis and management[M/OL]//London: National Institute for Health and Care Excellence(NICE); 2021: 11-13(2021-10-29. . |
| [63] |
ZHANG T, GAO G, KWOK L Y, et al. Gut microbiome-targeted therapies for Alzheimer's disease[J]. Gut Microbes, 2023, 15(2): 2271613. doi:10.1080/19490976.2023.2271613
doi: 10.1080/19490976.2023.2271613 |
| [64] |
CHOW R, BRUERA E, SANATANI M, et al. Cancer-related fatigue-pharmacological interventions: Systematic review and network meta-analysis[J]. BMJ Support Palliat Care, 2023, 13(3): 274-280. doi:10.1136/bmjspcare-2021-003244
doi: 10.1136/bmjspcare-2021-003244 |
| [65] |
XIONG R, GUNTER C, FLEMING E, et al. Multi-'omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients[J]. Cell Host Microbe, 2023, 31(2): 273-287. doi:10.1016/j.chom.2023.01.001
doi: 10.1016/j.chom.2023.01.001 |
| [66] |
WANG J H, CHOI Y, LEE J S, et al. Clinical evidence of the link between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: A retrospective review[J]. Eur J Med Res, 2024, 29(1): 148. doi:10.1186/s40001-024-01747-1
doi: 10.1186/s40001-024-01747-1 |
| [67] |
GERMAIN A, GILOTEAUX L, MOORE G E, et al. Plasma metabolomics reveals disrupted response and recovery following maximal exercise in myalgic encephalomyelitis/chronic fatigue syndrome[J]. JCI Insight, 2022, 7(9): e157621. doi:10.1172/jci.insight.157621
doi: 10.1172/jci.insight.157621 |
| [68] |
BARANIUK J N. Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS)[J]. Sci Rep, 2025, 15(1): 7381. doi:10.1038/s41598-025-91324-1
doi: 10.1038/s41598-025-91324-1 |
| [1] | 郭蕊,刘涛,苏玺. 基于心电图参数、犬尿氨酸代谢物建立精神分裂症共患心血管疾病的列线图模型[J]. 实用医学杂志, 2025, 41(8): 1205-1211. |
| [2] | 张浩峻,敬梅,朱雨锋,徐天鹏,陈羲,石容怡,单怡. 微生物-肠-脑通讯对心脏骤停后脑损伤神经炎症的影响[J]. 实用医学杂志, 2025, 41(6): 911-915. |
| [3] | 范春红,胡文龙,朱丽梅,杨锐富,蔡大霞,卢少华,蔡兴东. 新型标志物胞质型色氨酸-tRNA连接酶与腺苷脱氨酶联合诊断结核性胸腔积液的价值[J]. 实用医学杂志, 2025, 41(15): 2406-2411. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

