实用医学杂志 ›› 2025, Vol. 41 ›› Issue (6): 911-915.doi: 10.3969/j.issn.1006-5725.2025.06.021
• 综述 • 上一篇
张浩峻1,敬梅1,朱雨锋2,徐天鹏2,陈羲2,石容怡2,单怡2()
收稿日期:
2024-12-02
出版日期:
2025-03-25
发布日期:
2025-03-31
通讯作者:
单怡
E-mail:shanyi831@163.com
基金资助:
Haojun ZHANG1,Mei JING1,Yufeng ZHU2,Tianpeng XU2,Xi CHEN2,Rongyi SHI2,Yi. SHAN2()
Received:
2024-12-02
Online:
2025-03-25
Published:
2025-03-31
Contact:
Yi. SHAN
E-mail:shanyi831@163.com
摘要:
心脏骤停是一个重大的公共卫生事件,对人类生命和健康构成重大威胁。心肺复苏后脑损伤是经历心脏骤停的患者最主要预后不良因素和死亡原因,目前治疗手段及效果有限,近年来随着对微生物-肠-脑通讯的深入研究,发现通过调节肠道微生物及其代谢产物可能对心脏骤停后脑损伤中神经炎症起到调控作用。微生物-肠-脑通讯的关键物质是短链脂肪酸,机制涉及免疫、内分泌、神经调节通路,通过补充产短链脂肪酸菌群或者短链脂肪酸,可以改善心肺复苏后肠道菌群紊乱,减轻神经炎症。短链脂肪酸作为微生物-肠-脑通讯中的关键介质对心脏骤停后脑损伤的治疗具有巨大的潜力。该综述探讨了微生物-肠-脑通讯通过免疫、内分泌、神经调节通路在心肺复苏后脑损伤神经炎症中的影响和调控机制,为心肺复苏后脑损伤的治疗提供一种新的思路。
中图分类号:
张浩峻,敬梅,朱雨锋,徐天鹏,陈羲,石容怡,单怡. 微生物-肠-脑通讯对心脏骤停后脑损伤神经炎症的影响[J]. 实用医学杂志, 2025, 41(6): 911-915.
Haojun ZHANG,Mei JING,Yufeng ZHU,Tianpeng XU,Xi CHEN,Rongyi SHI,Yi. SHAN. Impact of microbiota⁃gut⁃brain axis on neuroinflammation after post⁃cardiac arrest brain injury[J]. The Journal of Practical Medicine, 2025, 41(6): 911-915.
1 | GREIF R, BHANJI F, BIGHAM B L, et al. Education, Implementation, and Teams: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations [J]. Resuscitation, 2020,156: A188-A239. |
2 | SOAR J, BERG K M, ANDERSEN L W, et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations [J]. Resuscitation, 2020,156: A80-A119. |
3 |
PERKINS G D, CALLAWAY C W, HAYWOOD K, et al. Brain injury after cardiac arrest [J]. Lancet, 2021,398(10307): 1269-1278. doi:10.1016/s0140-6736(21)00953-3
doi: 10.1016/s0140-6736(21)00953-3 |
4 |
BALU R, RAJAGOPALAN S, BAGHSHOMALI S, et al. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury [J]. Resuscitation, 2021,164: 114-121. doi:10.1016/j.resuscitation.2021.04.023
doi: 10.1016/j.resuscitation.2021.04.023 |
5 |
KJAERGAARD J, MØLLER J E, SCHMIDT H, et al. Blood-Pressure Targets in Comatose Survivors of Cardiac Arrest [J]. N Engl J Med, 2022,387(16): 1456-1466. doi:10.1056/nejmoa2208687
doi: 10.1056/nejmoa2208687 |
6 | SCHMIDT H, KJAERGAARD J, HASSAGER C, et al. Oxygen Targets in Comatose Survivors of Cardiac Arrest [J]. N Engl J Med, 2022,387(16): 1467-1476. |
7 |
PERKINS G D, NEUMAR R, HSU C H, et al. Improving Outcomes After Post-Cardiac Arrest Brain Injury: A Scientific Statement From the International Liaison Committee on Resuscitation [J]. Circulation, 2024.doi: 10.1161/CIR.0000000000001219 . Online ahead of print.
doi: 10.1161/CIR.0000000000001219 |
8 |
SANDRONI C, CRONBERG T, SEKHON M. Brain injury after cardiac arrest: Pathophysiology, treatment, and prognosis [J]. Intensive Care Med, 2021,47(12): 1393-1414. doi:10.1007/s00134-021-06548-2
doi: 10.1007/s00134-021-06548-2 |
9 |
MEYER M A S, WIBERG S, GRAND J, et al. Treatment Effects of Interleukin-6 Receptor Antibodies for Modulating the Systemic Inflammatory Response After Out-of-Hospital Cardiac Arrest (The IMICA Trial): A Double-Blinded, Placebo-Controlled, Single-Center, Randomized, Clinical Trial [J]. Circulation, 2021, 143(19): 1841-1851. doi:10.1161/circulationaha.120.053318
doi: 10.1161/circulationaha.120.053318 |
10 | 奚可欣, 赵宇骐, 谢晓婷, 等. 肠道菌群对胶质瘤的调控作用研究进展 [J]. 实用医学杂志, 2024,40(14): 2027-2030. |
11 |
MORAIS L H, SCHREIBER H L T, MAZMANIAN S K. The gut microbiota-brain axis in behaviour and brain disorders [J]. Nat Rev Microbiol, 2021,19(4): 241-255. doi:10.1038/s41579-020-00460-0
doi: 10.1038/s41579-020-00460-0 |
12 |
HOILAND R L, AINSLIE P N, WELLINGTON C L, et al. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post–Cardiac Arrest [J]. Circ Res, 2021,129(5): 583-597. doi:10.1161/circresaha.121.319157
doi: 10.1161/circresaha.121.319157 |
13 |
OUSTA A, PIAO L, FANG Y H, et al. Microglial Activation and Neurological Outcomes in a Murine Model of Cardiac Arrest [J]. Neurocrit Care, 2022,36(1): 61-70. doi:10.1007/s12028-021-01253-w
doi: 10.1007/s12028-021-01253-w |
14 |
WANG M, PAN W, XU Y, et al. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases [J]. J Inflamm Res, 2022,15: 3083-3094. doi:10.2147/jir.s350109
doi: 10.2147/jir.s350109 |
15 |
CHANG Y, ZHU J, WANG D, et al. NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury [J]. J Neuroinflammation, 2020,17(1): 219. doi:10.1186/s12974-020-01879-1
doi: 10.1186/s12974-020-01879-1 |
16 |
ZHENG G, HE F, XU J, et al. The Selective NLRP3-inflammasome inhibitor MCC950 Mitigates Post-resuscitation Myocardial Dysfunction and Improves Survival in a Rat Model of Cardiac Arrest and Resuscitation [J]. Cardiovasc Drugs Ther, 2023,37(3): 423-433. doi:10.1007/s10557-021-07282-z
doi: 10.1007/s10557-021-07282-z |
17 |
LINNERBAUER M, WHEELER M A, QUINTANA F J. Astrocyte Crosstalk in CNS Inflammation [J]. Neuron, 2020,108(4): 608-622. doi:10.1016/j.neuron.2020.08.012
doi: 10.1016/j.neuron.2020.08.012 |
18 |
SHEN X Y, GAO Z K, HAN Y, et al. Activation and Role of Astrocytes in Ischemic Stroke [J]. Front Cell Neurosci, 2021,15: 755955. doi:10.3389/fncel.2021.755955
doi: 10.3389/fncel.2021.755955 |
19 |
LING Y, GONG T, ZHANG J, et al. Gut Microbiome Signatures Are Biomarkers for Cognitive Impairment in Patients With Ischemic Stroke [J]. Front Aging Neurosci, 2020,12: 511562. doi:10.3389/fnagi.2020.511562
doi: 10.3389/fnagi.2020.511562 |
20 |
YU S, XU J, WU C, et al. Multi-omics Study of Hypoxic-Ischemic Brain Injury After Cardiopulmonary Resuscitation in Swine [J]. Neurocrit Care, 2024.doi: 10.1007/s12028-024-02038-7 . Online ahead of print.
doi: 10.1007/s12028-024-02038-7 |
21 |
YUAN Q, SUN L, MA G, et al. Alterations of the gut microbial community structure modulates the Th17 cells response in a rat model of asphyxial cardiac arrest [J]. Biochem Biophys Rep, 2023,35: 101543. doi:10.1016/j.bbrep.2023.101543
doi: 10.1016/j.bbrep.2023.101543 |
22 |
LI X, YIN X, PANG J, et al. Hydrogen sulfide inhibits lipopolysaccharide-based neuroinflammation-induced astrocyte polarization after cerebral ischemia/reperfusion injury [J]. Eur J Pharmacol, 2023,949: 175743. doi:10.1016/j.ejphar.2023.175743
doi: 10.1016/j.ejphar.2023.175743 |
23 |
WENZEL T J, GATES E J, RANGER A L, et al. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells [J]. Mol Cell Neurosci, 2020,105: 103493. doi:10.1016/j.mcn.2020.103493
doi: 10.1016/j.mcn.2020.103493 |
24 |
MARTINEZ M, YU W, MENDEN H L, et al. Butyrate suppresses experimental necrotizing enterocolitis-induced brain injury in mice [J]. Front Pediatr, 2023,11: 1284085. doi:10.3389/fped.2023.1284085
doi: 10.3389/fped.2023.1284085 |
25 |
XIAO W, SU J, GAO X, et al. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids [J]. Microbiome, 2022,10(1): 62. doi:10.1186/s40168-022-01255-6
doi: 10.1186/s40168-022-01255-6 |
26 |
LI T T, ZHAO D M, WEI Y T, et al. Effect and Mechanism of Sodium Butyrate on Neuronal Recovery and Prognosis in Diabetic Stroke [J]. J Neuroimmune Pharmacol, 2023,18(3): 366-382. doi:10.1007/s11481-023-10071-0
doi: 10.1007/s11481-023-10071-0 |
27 |
YUAN C, SHI L, SUN Z, et al. Regulatory T cell expansion promotes white matter repair after stroke [J]. Neurobiol Dis, 2023,179: 106063. doi:10.1016/j.nbd.2023.106063
doi: 10.1016/j.nbd.2023.106063 |
28 |
MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al. SCFA: Mechanisms and functional importance in the gut [J]. Proc Nutr Soc, 2021,80(1): 37-49. doi:10.1017/s0029665120006916
doi: 10.1017/s0029665120006916 |
29 |
SCHONFELD P, WOJTCZAK L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective [J]. J Lipid Res, 2016,57(6): 943-954. doi:10.1194/jlr.r067629
doi: 10.1194/jlr.r067629 |
30 | MITCHELL R W, ON N H, DEL BIGIO M R, et al. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells [J]. J Neurochem, 2011,117(4): 735-746. |
31 |
SADLER R, CRAMER J V, HEINDL S, et al. Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms [J]. J Neurosci, 2020,40(5): 1162-1173. doi:10.1523/jneurosci.1359-19.2019
doi: 10.1523/jneurosci.1359-19.2019 |
32 |
SILVA Y P, BERNARDI A, FROZZA R L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication [J]. Front Endocrinol (Lausanne), 2020,11: 25. doi:10.3389/fendo.2020.00025
doi: 10.3389/fendo.2020.00025 |
33 |
ZHOU Z, XU N, MATEI N, et al. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats [J]. J Cereb Blood Flow Metab, 2021,41(2): 267-281. doi:10.1177/0271678x20910533
doi: 10.1177/0271678x20910533 |
34 |
WEI H, YU C, ZHANG C, et al. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis [J]. Biomed Pharmacother, 2023,160: 114308. doi:10.1016/j.biopha.2023.114308
doi: 10.1016/j.biopha.2023.114308 |
35 |
MA B D Y, CHAN T Y H, LO B W Y. Unveiling the hidden culprit: How the brain-gut axis fuels neuroinflammation in ischemic stroke [J]. Surg Neurol Int, 2024,15: 394. doi:10.25259/sni_703_2024
doi: 10.25259/sni_703_2024 |
36 |
PASOKH A, FARZIPOUR M, MAHMOUDI J, et al. The effect of fecal microbiota transplantation on stroke outcomes: A systematic review [J]. J Stroke Cerebrovasc Dis, 2022,31(11): 106727. doi:10.1016/j.jstrokecerebrovasdis.2022.106727
doi: 10.1016/j.jstrokecerebrovasdis.2022.106727 |
37 |
BENAKIS C, LIESZ A. The gut-brain axis in ischemic stroke: Its relevance in pathology and as a therapeutic target [J]. Neurol Res Pract, 2022,4(1): 57. doi:10.1186/s42466-022-00222-8
doi: 10.1186/s42466-022-00222-8 |
38 |
WANG X, SUN Z, YANG T, et al. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition [J]. mSystems, 2023,8(4): e0041523. doi:10.1128/msystems.00915-23
doi: 10.1128/msystems.00915-23 |
39 |
REN Q, HE C, SUN Y, et al. Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota [J]. Front Pharmacol, 2024,15: 1461873. doi:10.3389/fphar.2024.1461873
doi: 10.3389/fphar.2024.1461873 |
40 |
ZHAO Q, SHEN Y, LI R, et al. Cardiac arrest and resuscitation activates the hypothalamic-pituitary-adrenal axis and results in severe immunosuppression [J]. J Cereb Blood Flow Metab, 2021,41(5): 1091-1102. doi:10.1177/0271678x20948612
doi: 10.1177/0271678x20948612 |
41 |
HASSAMAL S. Chronic stress, neuroinflammation, and depression: An overview of pathophysiological mechanisms and emerging anti-inflammatories [J]. Front Psychiatry, 2023,14: 1130989. doi:10.3389/fpsyt.2023.1130989
doi: 10.3389/fpsyt.2023.1130989 |
42 |
MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease [J]. Trends Endocrinol Metab, 2022,33(4): 247-265. doi:10.1016/j.tem.2022.01.002
doi: 10.1016/j.tem.2022.01.002 |
43 |
CONN K A, BORSOM E M, COPE E K. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease [J]. Gut Microbes, 2024,16(1): 2371950. doi:10.1080/19490976.2024.2371950
doi: 10.1080/19490976.2024.2371950 |
44 |
MADISON A A, BAILEY M T. Stressed to the Core: Inflammation and Intestinal Permeability Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes [J]. Biol Psychiatry, 2024,95(4): 339-347. doi:10.1016/j.biopsych.2023.10.014
doi: 10.1016/j.biopsych.2023.10.014 |
45 |
PAN I, ISSAC P K, RAHMAN M M, et al. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases [J]. Mol Neurobiol, 2024,61(12): 9873-9891. doi:10.1007/s12035-023-03691-3
doi: 10.1007/s12035-023-03691-3 |
46 |
KAKINUMA Y. Significance of vagus nerve function in terms of pathogenesis of psychosocial disorders [J]. Neurochem Int, 2021,143: 104934. doi:10.1016/j.neuint.2020.104934
doi: 10.1016/j.neuint.2020.104934 |
47 |
WANG Y, TAN Q, PAN M, et al. Minimally invasive vagus nerve stimulation modulates mast cell degranulation via the microbiota-gut-brain axis to ameliorate blood-brain barrier and intestinal barrier damage following ischemic stroke [J]. Int Immunopharmacol, 2024,132: 112030. doi:10.1016/j.intimp.2024.112030
doi: 10.1016/j.intimp.2024.112030 |
48 |
XIE J, BRUGGEMAN A, DE NOLF C, et al. Gut microbiota regulates blood-cerebrospinal fluid barrier function and Aβ pathology [J]. Embo J, 2023,42(17): e111515. doi:10.15252/embj.2022111515
doi: 10.15252/embj.2022111515 |
49 |
ANDERSEN L W, LIND P C, VAMMEN L, et al. Adult post-cardiac arrest interventions: An overview of randomized clinical trials [J]. Resuscitation, 2020,147: 1-11. doi:10.1016/j.resuscitation.2019.12.003
doi: 10.1016/j.resuscitation.2019.12.003 |
50 | 刘远山, 余凯, 黄子通, 等. 利用模拟人研究操作者疲劳和心肺复苏质量相关性 [J]. 实用医学杂志, 2020,36(24): 3430-3433. |
51 | 李星明, 孙广琦, 郑雯, 等. 心肺复苏后昏迷患者神经功能预后生物标志物的研究进展 [J]. 实用休克杂志(中英文), 2024,8(5): 290-298. |
52 | 姚准, 赵元瑞, 余追. 心搏骤停后脑损伤的病理生理改变的研究进展 [J]. 卒中与神经疾病, 2024,31(3): 302-306. |
[1] | 刘槃,席德双,黄瑞,滕益霖,刘睿,曾高峰,宗少晖. 短链脂肪酸通过抑制白细胞介素17A和NF-κB信号通路减轻γδT细胞介导的炎症反应[J]. 实用医学杂志, 2024, 40(8): 1088-1094. |
[2] | 韦耿周,黄国戈,朱创志,江稳强,胡北. 体外心肺复苏在急诊难治性心脏骤停的应用及预后因素分析[J]. 实用医学杂志, 2024, 40(24): 3446-3451. |
[3] | 窦鑫,贺昌辉,梅笑,潘海迪,马源鑫,王伟. 基于“短链脂肪酸-肠屏障”途径探讨中药在腹泻型肠易激综合征中的干预研究进展[J]. 实用医学杂志, 2024, 40(15): 2177-2182. |
[4] | 徐庆博 杨玉 杨利 谢理玲 张东光 黄慧. 肠道微生物群与1型糖尿病的研究进展[J]. 实用医学杂志, 2023, 39(2): 142-147. |
[5] | 杨艳青, 李灿委, 杨自忠, 张成桂, 高鹏飞, . 肠道菌群代谢物——短链脂肪酸的研究进展[J]. 实用医学杂志, 2022, 38(14): 1834-1837. |
[6] | 武丽珠, 于海侠. 血清可溶性肿瘤因子2抑制剂、半乳糖凝集素⁃3与尿酸水平对心脏骤停后综合征患者预后的预测价值 [J]. 实用医学杂志, 2021, 37(16): 2098-2101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||