1 |
POWELL E E , WONG V W S , RINELLA M . Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224. doi:10.1016/s0140-6736(20)32511-3
doi: 10.1016/s0140-6736(20)32511-3
|
2 |
MANTOVANI A , DALBENI A . Recent Developments in NAFLD[J]. Int J Mol Sci, 2022, 23(5): 2882. doi:10.3390/ijms23052882
doi: 10.3390/ijms23052882
|
3 |
ZHOU J , ZHENG Q , CHEN Z . The Nrf2 pathway in liver diseases[J]. Front Cell Dev Biol, 2022, 10: 826204. doi:10.3389/fcell.2022.826204
doi: 10.3389/fcell.2022.826204
|
4 |
CAROTTI S , AQUILANO K , VALENTINI F , et al . An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase[J].Am J Physiol Gastrointest Liver Physiol, 2020, 319(4): G469-G480. doi:10.1152/ajpgi.00049.2020
doi: 10.1152/ajpgi.00049.2020
|
5 |
XU X , POULSEN K L , WU L , et al . Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7(1): 287. doi:10.1038/s41392-022-01119-3
doi: 10.1038/s41392-022-01119-3
|
6 |
SVEGLIATI-BARONI G , PIERANTONELLI I , TORQUATO P , et al . Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309. doi:10.1016/j.freeradbiomed.2019.05.029
doi: 10.1016/j.freeradbiomed.2019.05.029
|
7 |
PEI K , GUI T , KAN D , et al . An overview of lipid metabolism and nonalcoholic fatty liver disease[J]. Biomed Res Int, 2020, 4020249. doi:10.1155/2020/4020249
doi: 10.1155/2020/4020249
|
8 |
FELDSTEIN A E . Novel insights into the pathophysiology of nonalcoholic fatty liver disease[C], Semin Liver Dis,2010,30(4):391-401. doi:10.1055/s-0030-1267539
doi: 10.1055/s-0030-1267539
|
9 |
CASAGRANDE B P , DE SOUZA D V , RIBEIRO D A , et al . Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation[J]. Endocrinol, 2020, 245(3): 369-380. doi:10.1530/joe-20-0073
doi: 10.1530/joe-20-0073
|
10 |
MARRA F , SVEGLIATI-BARONI G . Lipotoxicity and the gut-liver axis in NASH pathogenesis[J], Hepatol, 2018, 68(2): 280-295. doi:10.1016/j.jhep.2017.11.014
doi: 10.1016/j.jhep.2017.11.014
|
11 |
SUZUKI A , DIEHL A M . Nonalcoholic steatohepatitis[J]. Annu Rev Med, 2017, 68: 85-98. doi:10.1146/annurev-med-051215-031109
doi: 10.1146/annurev-med-051215-031109
|
12 |
PIERANTONELLI I , SVEGLIATI-BARONI G . Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH[J]. Transplantation, 2019, 103(1): e1-e13. doi:10.1097/tp.0000000000002480
doi: 10.1097/tp.0000000000002480
|
13 |
GASTALDELLI A . Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD?[J]. Clin Sci (Lond),2017,131(22):2701-2704. doi:10.1042/cs20170987
doi: 10.1042/cs20170987
|
14 |
JEON S M . Regulation and function of AMPK in physiology and diseases[J]. Exp Mol Med, 2016, 48(7): e245-e245. doi:10.1038/emm.2016.81
doi: 10.1038/emm.2016.81
|
15 |
FANG C , PAN J , QU N , et al . The AMPK pathway in fatty liver disease[J]. Front Physiol, 2022,13:970292. doi:10.3389/fphys.2022.970292
doi: 10.3389/fphys.2022.970292
|
16 |
HARDIE D G , ROSS F A , HAWLEY S A . AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nat Rev Mol Cell Biol, 2012,13(4):251-262. doi:10.1038/nrm3311
doi: 10.1038/nrm3311
|
17 |
CARLING D . AMPK hierarchy: a matter of space and time[J]. Cell Res, 2019,29(6):425-426. doi:10.1038/s41422-019-0171-6
doi: 10.1038/s41422-019-0171-6
|
18 |
SMITH B K , MARCINKO K , DESJARDINS E M , et al . Treatment of nonalcoholic fatty liver disease: role of AMPK[J]. Am J Physiol Endocrinol Metab, 2016, 311(4): E730-E740. doi:10.1152/ajpendo.00225.2016
doi: 10.1152/ajpendo.00225.2016
|
19 |
HOPPE S , BIERHOFF H , CADO I , et al . AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply[J]. Proc Natl Acad Sci U S A., 2009,106(42):17781-17786. doi:10.1073/pnas.0909873106
doi: 10.1073/pnas.0909873106
|
20 |
AMEER F , SCANDIUZZI L , HASNAIN S , et al . De novo lipogenesis in health and disease[J]. Metabolism, 2014,63(7):895-902. doi:10.1016/j.metabol.2014.04.003
doi: 10.1016/j.metabol.2014.04.003
|
21 |
ZANG M , ZUCCOLLO A , HOU X , et al . AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells[J]. Biol Chem, 2004,279(46):47898-47905. doi:10.1074/jbc.m408149200
doi: 10.1074/jbc.m408149200
|
22 |
CHEN Y , HE X , CHEN X , et al . SeP is elevated in NAFLD and participates in NAFLD pathogenesis through AMPK/ACC pathway[J]. J Cell Physiol, 2021,236(5):3800-3807. doi:10.1002/jcp.30121
doi: 10.1002/jcp.30121
|
23 |
ADEVA-ANDANY M M , CARNEIRO-FREIRE N , SECO-FILGUEIRA M , et al . Mitochondrial β-oxidation of saturated fatty acids in humans[J]. Mitochondrion, 2019,46:73-90. doi:10.1016/j.mito.2018.02.009
doi: 10.1016/j.mito.2018.02.009
|
24 |
TIAN L I , CAO W , YUE R , et al . Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway[J]. J Pharmacol Sci, 2019,139(4):352-360. doi:10.1016/j.jphs.2019.02.008
doi: 10.1016/j.jphs.2019.02.008
|
25 |
UENO T , KOMATSU M . Autophagy in the liver: functions in health and disease[J]. Gastroenterol Hepatol, 2017,14(3):170-184. doi:10.1038/nrgastro.2016.185
doi: 10.1038/nrgastro.2016.185
|
26 |
SHI C , XUE W , HAN B , et al . Acetaminophen aggravates fat accumulation in NAFLD by inhibiting autophagy via the AMPK/mTOR pathway[J]. Eur J Pharmacol, 2019,850:15-22. doi:10.1016/j.ejphar.2019.02.005
doi: 10.1016/j.ejphar.2019.02.005
|
27 |
IERSHOV A , NEMAZANYY I , AYLKHOURY C , et al . The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα[J]. Nat Commun, 2019,10(1):1566. doi:10.1038/s41467-019-09598-9
doi: 10.1038/s41467-019-09598-9
|
28 |
HERZIG S , SHAW R J . AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018,19(2):121-135. doi:10.1038/nrm.2017.95
doi: 10.1038/nrm.2017.95
|
29 |
BAI Y , LI T , LIU J , et al . Aerobic exercise and vitamin E improve high-fat diet-induced NAFLD in rats by regulating the AMPK pathway and oxidative stress[J]. Eur J Nutr, 2023,62(6):2621-2632. doi:10.1007/s00394-023-03179-9
doi: 10.1007/s00394-023-03179-9
|
30 |
CHEN K , CHEN X , XUE H , et al . Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway[J]. Food Funct, 2019,10(2):814-823. doi:10.1039/c8fo01236a
doi: 10.1039/c8fo01236a
|
31 |
DUSABIMANA T , PARK E J , JE J, et al . P2y2r deficiency ameliorates hepatic steatosis by reducing lipogenesis and enhancing fatty acid β-oxidation through ampk and pgc-1α induction in high-fat diet-fed mice[J]. Int J Mol Sci, 2021,22(11):5528. doi:10.3390/ijms22115528
doi: 10.3390/ijms22115528
|
32 |
ILBEIGI D , NOURBAKHSH M , PASALAR P , et al . Nicotinamide phosphoribosyltransferase knockdown leads to lipid accumulation in HepG2 cells through the SIRT1-AMPK pathway[J]. Cell J, 2020,22():125-132.
|
33 |
ZHANG Y , DENG Y , TANG K , et al . Berberine ameliorates high-fat diet-induced non-alcoholic fatty liver disease in rats via activation of SIRT3/AMPK/ACC pathway[J]. Curr Med Sci, 2019, 39(1): 37-43. doi:10.1007/s11596-019-1997-3
doi: 10.1007/s11596-019-1997-3
|
34 |
LIN W , JIN Y , HU X , et al . AMPK/PGC-1α/GLUT4-mediated effect of icariin on hyperlipidemia-induced non-alcoholic fatty liver disease and lipid metabolism disorder in mice[J]. Biochemistry (Mosc), 2021,86(11):1407-1417. doi:10.1134/s0006297921110055
doi: 10.1134/s0006297921110055
|
35 |
CHEN H , NIE T , ZHANG P , et al . Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation[J]. Life Sci, 2022,296:120428. doi:10.1016/j.lfs.2022.120428
doi: 10.1016/j.lfs.2022.120428
|
36 |
LIU X , HU M , YE C , et al . Isosilybin regulates lipogenesis and fatty acid oxidation via the AMPK/SREBP-1c/PPARα pathway[J]. Chem Biol Interact, 2022,368:110250. doi:10.1016/j.cbi.2022.110250
doi: 10.1016/j.cbi.2022.110250
|
37 |
ZHANG M , YUAN Y , WANG Q , et al . The Chinese medicine Chai Hu Li Zhong Tang protects against non-alcoholic fatty liver disease by activating AMPKα[J].Biosci Rep, 2018,38(6):BSR20180644. doi:10.1042/bsr20180644
doi: 10.1042/bsr20180644
|
38 |
ZHU M , HAO S , LIU T , et al . Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq[J]. Oncotarget, 2017,8(47):82621-82631. doi:10.18632/oncotarget.19734
doi: 10.18632/oncotarget.19734
|
39 |
MENG Z , LIU X , LI T , et al . The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway[J]. Int Immunopharmacol, 2021,94:107492. doi:10.1016/j.intimp.2021.107492
doi: 10.1016/j.intimp.2021.107492
|
40 |
KRISHNAN A , VISWANATHAN P , VENKATARAMAN A C . AMPK activation by AICAR reduces diet induced fatty liver in C57BL/6 mice[J]. Tissue Cell, 2023,82:102054. doi:10.1016/j.tice.2023.102054
doi: 10.1016/j.tice.2023.102054
|
41 |
CHEN S , LUO S , ZUO B , et al . Magnesium supplementation stimulates autophagy to reduce lipid accumulation in hepatocytes via the AMPK/mTOR pathway[J]. Biol Trace Elem Res, 2023,201(7):3311-3322. doi:10.1007/s12011-022-03438-6
doi: 10.1007/s12011-022-03438-6
|
42 |
HE Y , AO N , YANG J , et al . The preventive effect of liraglutide on the lipotoxic liver injury via increasing autophagy[J]. Ann Hepatol, 2020,19(1):44-52. doi:10.1016/j.aohep.2019.06.023
doi: 10.1016/j.aohep.2019.06.023
|
43 |
YAN L S , ZHANG S F , LUO G , et al . Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway[J]. Metabolism, 2022,131:155200. doi:10.1016/j.metabol.2022.155200
doi: 10.1016/j.metabol.2022.155200
|
44 |
ZHANG J , DU H , SHEN M , et al . Kangtaizhi granule alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats and HepG2 cells via AMPK/mTOR signaling pathway[J]. Immunol Res, 2020,2020:3413186. doi:10.1155/2020/3413186
doi: 10.1155/2020/3413186
|