1 |
RICCI Z, ROMAGNOLI S, RONCO C. Cardiorenal Syndrome[J]. Crit Care Clin, 2021, 37(2):335-347. doi:10.1016/j.ccc.2020.11.003
doi: 10.1016/j.ccc.2020.11.003
|
2 |
SHAAYA G, AL-KHAZAALI A, ARORA R. Heart Rate As a Biomarker in Heart Failure: Role of Heart Rate Lowering Agents[J]. Am J Ther, 2017, 24(5):e532-e539. doi:10.1097/mjt.0000000000000336
doi: 10.1097/mjt.0000000000000336
|
3 |
SZLAGOR M, DYBIEC J, MLYNARSKA E, et al. Chronic Kidney Disease as a Comorbidity in Heart Failure[J]. Int J Mol Sci, 2023, 24(3):2988. doi:10.3390/ijms24032988
doi: 10.3390/ijms24032988
|
4 |
CARMENA R, ASCASO J F, REDON J. Chronic kidney disease as a cardiovascular risk factor[J]. J Hypertens, 2020, 38(11):2110-2121. doi:10.1097/hjh.0000000000002506
doi: 10.1097/hjh.0000000000002506
|
5 |
TWARDAWA M, FORMANOWICZ P, FORMANOWICZ D. Chronic Kidney Disease as a Cardiovascular Disorder-Tonometry Data Analyses[J]. Int J Environ Res Public Health, 2022, 19(19):12339. doi:10.3390/ijerph191912339
doi: 10.3390/ijerph191912339
|
6 |
PRICE A M, EDWARDS N C, HAYER M K, et al. Chronic kidney disease as a cardiovascular risk factor: Lessons from kidney donors[J]. J Am Soc Hypertens, 2018, 12(7):497-505. doi:10.1016/j.jash.2018.04.010
doi: 10.1016/j.jash.2018.04.010
|
7 |
OTAKI Y, WATANABE T, TAKAHASHI H, et al. Association of renal tubular damage with cardio-renal anemia syndrome in patients with heart failure[J]. Int J Cardiol, 2014, 173(2):222-228. doi:10.1016/j.ijcard.2014.02.044
doi: 10.1016/j.ijcard.2014.02.044
|
8 |
LI W, ZHANG Y, WANG Q, et al. 6-Gingerol ameliorates ulcerative colitis by inhibiting ferroptosis based on the integrative analysis of plasma metabolomics and network pharmacology[J]. Food Funct, 2024, 15(11):6054-6067. doi:10.1039/d4fo00952e
doi: 10.1039/d4fo00952e
|
9 |
HAN X, LIU P, LIU M, et al. [6]-Gingerol Ameliorates ISO-Induced Myocardial Fibrosis by Reducing Oxidative Stress, Inflammation, and Apoptosis through Inhibition of TLR4/MAPKs/NF-kappaB Pathway[J]. Mol Nutr Food Res, 2020, 64(13):e2000003. doi:10.1002/mnfr.202000003
doi: 10.1002/mnfr.202000003
|
10 |
YAHYAZADEH R, BARADARAN R V, AHMAD M S, et al. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats[J]. Saudi Pharm J, 2024, 32(6):102092. doi:10.1016/j.jsps.2024.102092
doi: 10.1016/j.jsps.2024.102092
|
11 |
石晓路,武乾. 去甲乌药碱与6-姜酚配伍对心衰大鼠强心机制研究[J]. 中华中医药杂志, 2016, 31(2):420-423.
|
12 |
LIU L, YU N, LENG W, et al. 6-Gingerol, a functional polyphenol of ginger, reduces pulmonary fibrosis by activating Sirtuin1[J]. Allergol Immunopathol (Madr),2022,50(2):104-114. doi:10.15586/aei.v50i2.533
doi: 10.15586/aei.v50i2.533
|
13 |
ALGANDABY M M, EL-HALAWANY A M, ABDALLAH H M, et al. Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators[J]. Naunyn Schmiedebergs Arch Pharmacol, 2016, 389(4):419-428. doi:10.1007/s00210-016-1210-1
doi: 10.1007/s00210-016-1210-1
|
14 |
MA S Q, GUO Z, LIU F Y, et al. 6-Gingerol protects against cardiac remodeling by inhibiting the p38 mitogen-activated protein kinase pathway[J]. Acta Pharmacol Sin, 2021, 42(10):1575-1586. doi:10.1038/s41401-020-00587-z
doi: 10.1038/s41401-020-00587-z
|
15 |
SONG Z, FANG H, ZHANG X, et al. Renoprotective Glycoside Derivatives from Zingiber officinale (Ginger) Peels[J]. J Agric Food Chem, 2023, 71(41):15170-15185. doi:10.1021/acs.jafc.3c05224
doi: 10.1021/acs.jafc.3c05224
|
16 |
SHEN Z, SU T, CHEN J, et al. Collagen triple helix repeat containing-1 exerts antifibrotic effects on human skin fibroblast and bleomycin-induced dermal fibrosis models[J]. Ann Transl Med, 2021, 9(9):801. doi:10.21037/atm-21-1884
doi: 10.21037/atm-21-1884
|
17 |
SHEN Z, SU T, CHEN J, et al. Collagen triple helix repeat containing-1 exerts antifibrotic effects on human skin fibroblast and bleomycin-induced dermal fibrosis models[J]. Ann Transl Med, 2021, 9(9):801. doi:10.21037/atm-21-1884
doi: 10.21037/atm-21-1884
|
18 |
ZHANG Y F, WANG Q, LUO J, et al. Knockdown of elF3a inhibits collagen synthesis in renal fibroblasts via Inhibition of transforming growth factor-beta1/Smad signaling pathway[J]. Int J Clin Exp Pathol, 2015, 8(8):8983-8989.
|
19 |
LIU S, KOMPA A R, KUMFU S, et al. Subtotal nephrectomy accelerates pathological cardiac remodeling post-myocardial infarction: implications for cardiorenal syndrome[J]. Int J Cardiol, 2013, 168(3):1866-1880. doi:10.1016/j.ijcard.2012.12.065
doi: 10.1016/j.ijcard.2012.12.065
|
20 |
ZHAO R R, ACKERS-JOHNSON M, STENZIG J, et al. Targeting Chondroitin Sulfate Glycosaminoglycans to Treat Cardiac Fibrosis in Pathological Remodeling[J]. Circulation, 2018, 137(23):2497-2513. doi:10.1161/circulationaha.117.030353
doi: 10.1161/circulationaha.117.030353
|
21 |
YANG K, WANG C, NIE L, et al. Klotho Protects Against Indoxyl Sulphate-Induced Myocardial Hypertrophy[J]. J Am Soc Nephrol, 2015, 26(10):2434-2446. doi:10.1681/asn.2014060543
doi: 10.1681/asn.2014060543
|
22 |
LIU H, ZHU R, LIU C, et al. Evaluation of Decalcification Techniques for Rat Femurs Using HE and Immunohistochemical Staining[J]. Biomed Res Int, 2017, 2017:9050754. doi:10.1155/2017/9050754
doi: 10.1155/2017/9050754
|
23 |
IRIE N, LEE S M, LORENZI V, et al. DMRT1 regulates human germline commitment[J]. Nat Cell Biol, 2023, 25(10):1439-1452. doi:10.1038/s41556-023-01224-7
doi: 10.1038/s41556-023-01224-7
|
24 |
GHOSH-CHOUDHARY S, FINKEL T. Lactylation regulates cardiac function[J]. Cell Res, 2023, 33(9):653-654. doi:10.1038/s41422-023-00857-5
doi: 10.1038/s41422-023-00857-5
|
25 |
SU S A, YANG D, WU Y, et al. EphrinB2 Regulates Cardiac Fibrosis Through Modulating the Interaction of Stat3 and TGF-beta/Smad3 Signaling[J]. Circ Res, 2017, 121(6):617-627. doi:10.1161/circresaha.117.311045
doi: 10.1161/circresaha.117.311045
|
26 |
ZANNAD F, ROSSIGNOL P. Cardiorenal Syndrome Revisited[J]. Circulation, 2018, 138(9):929-944. doi:10.1161/circulationaha.117.028814
doi: 10.1161/circulationaha.117.028814
|
27 |
DELGADO-VALERO B, CACHOFEIRO V, MARTINEZ-MARTINEZ E. Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved[J]. Cells, 2021, 10(7):1824. doi:10.3390/cells10071824
doi: 10.3390/cells10071824
|
28 |
XU X, ZHANG B, WANG Y, et al. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities[J]. Biomed Pharmacother, 2023, 164:114901. doi:10.1016/j.biopha.2023.114901
doi: 10.1016/j.biopha.2023.114901
|
29 |
曹浩,吉霆威,兰琴,等. 经腹肾次全切建立大鼠心肾综合征模型[J]. 中华医学杂志, 2019, 99(6):447-452. doi:10.3760/cma.j.issn.0376-2491.2019.06.013
doi: 10.3760/cma.j.issn.0376-2491.2019.06.013
|
30 |
DENG T, WEI Z, GAEL A, et al. Higenamine Improves Cardiac and Renal Fibrosis in Rats With Cardiorenal Syndrome via ASK1 Signaling Pathway[J]. J Cardiovasc Pharmacol, 2020, 75(6):535-544. doi:10.1097/fjc.0000000000000822
doi: 10.1097/fjc.0000000000000822
|
31 |
QIU Q, CAO J, WANG Y, et al. Time Course of the Effects of Buxin Yishen Decoction in Promoting Heart Function and Inhibiting the Progression of Renal Fibrosis in Myocardial Infarction Caused Type 2 Cardiorenal Syndrome Rats[J]. Front Pharmacol, 2019, 10:1267. doi:10.3389/fphar.2019.01267
doi: 10.3389/fphar.2019.01267
|
32 |
ZHAO Y, WANG C, HONG X, et al. Wnt/beta-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome[J]. Kidney Int, 2019, 95(4):815-829. doi:10.1016/j.kint.2018.11.021
doi: 10.1016/j.kint.2018.11.021
|