1 |
GONCALVES I, LEWIS C, GRAINGER B, et al. Thrombosis in patients with immune thrombocytopenia: incidence, risk, and clinical outcomes[J]. Res Pract Thromb Haemost, 2024,8(1): 102342. doi:10.1016/j.rpth.2024.102342
doi: 10.1016/j.rpth.2024.102342
|
2 |
王蕾, 贺小宁, 李正翔, 等. 原发免疫性血小板减少症患者真实世界治疗现状与疾病负担研究[J]. 中国医院药学杂志, 2023,43(14): 1602-1607. doi:10.13286/j.1001-5213.2023.14.13
doi: 10.13286/j.1001-5213.2023.14.13
|
3 |
GOETTE N P, BORZONE F R, DISCIANNI L A, et al. Megakaryocyte-stromal cell interactions: Effect on megakaryocyte proliferation, proplatelet production, and survival[J]. Exp Hematol, 2022,107: 24-37. doi:10.1016/j.exphem.2022.01.002
doi: 10.1016/j.exphem.2022.01.002
|
4 |
WANG M, FENG R, ZHANG J M, et al. Dysregulated megakaryocyte distribution associated with nestin(+) mesenchymal stem cells in immune thrombocytopenia[J]. Blood Adv, 2019,3(9): 1416-1428. doi:10.1182/bloodadvances.2018026690
doi: 10.1182/bloodadvances.2018026690
|
5 |
何月, 纪德香, 卢玮, 等. 免疫性血小板减少症患者骨髓间充质干细胞自身功能缺陷机制的研究进展[J]. 细胞与分子免疫学杂志, 2022,38(3): 275-280.
|
6 |
WU F, SHE Z, LI C, et al. Therapeutic potential of MSCs and MSC-derived extracellular vesicles in immune thrombocytopenia[J]. Stem Cell Res Ther, 2023,14(1): 79. doi:10.1186/s13287-023-03323-6
doi: 10.1186/s13287-023-03323-6
|
7 |
CHEN Y, XU Y, CHI Y, et al. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells in the treatment of refractory immune thrombocytopenia: A prospective, single arm, phase I trial[J]. Signal Transduct Target Ther, 2024,9(1): 102. doi:10.1038/s41392-024-01793-5
doi: 10.1038/s41392-024-01793-5
|
8 |
师锦宁. 血康口服液治疗血小板减少症临床疗效观察[J]. 中国现代药物应用, 2009,3(22): 110-111. doi:10.3969/j.issn.1673-9523.2009.22.096
doi: 10.3969/j.issn.1673-9523.2009.22.096
|
9 |
卢晓南, 彭文虎, 徐国良, 等. 肿节风总黄酮对免疫性血小板减少大鼠骨髓细胞微环境的影响[J]. 中药药理与临床, 2015,31(6): 66-69.
|
10 |
卢晓南, 孙慧娟, 朱静, 等. 肿节风总黄酮对细胞共培养体系中巨核细胞分化、成熟的影响[J]. 中药新药与临床药理, 2019,30(11): 1277-1283.
|
11 |
巢素珍, 周年, 石心怡, 等. 芒果苷对同型半胱氨酸诱导骨髓间充质干细胞分化的影响[J]. 实用医学杂志, 2024,40(23): 3284-3290. doi:10.3969/j.issn.1006-5725.2024.23.002
doi: 10.3969/j.issn.1006-5725.2024.23.002
|
12 |
蒋焰, 王小勤, 梅鸿, 等. Ⅱ型肺泡上皮细胞来源外泌体miR-21-5p靶向SKP2缓解支气管肺发育不良[J]. 实用医学杂志, 2024,40(23): 3298-3305. doi:10.3969/j.issn.1006-5725.2024.23.004
doi: 10.3969/j.issn.1006-5725.2024.23.004
|
13 |
ZHANG Z, SHANG G, LU Z, et al. Daucosterol regulates JAK2-STAT3 signaling pathway to promote megakaryocyte differentiation[J]. Blood Cells Mol Dis, 2024,107: 102858. doi:10.1016/j.bcmd.2024.102858
doi: 10.1016/j.bcmd.2024.102858
|
14 |
MITITELU A, ONISAI M C, ROSCA A, et al. Current Understanding of Immune Thrombocytopenia: A Review of Pathogenesis and Treatment Options[J]. Int J Mol Sci, 2024,25(4):2163. doi:10.3390/ijms25042163
doi: 10.3390/ijms25042163
|
15 |
ZHANG J M, ZHU X L, XUE J, et al. Integrated mRNA and miRNA profiling revealed deregulation of cellular stress response in bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia[J]. Funct Integr Genomics, 2018,18(3): 287-299. doi:10.1007/s10142-018-0591-2
doi: 10.1007/s10142-018-0591-2
|
16 |
郑颖, 黄珂敏. 外泌体研究态势和前瞻的计量与可视化分析[J]. 中国组织工程研究, 2024,28(13): 2126-2132.
|
17 |
HE Y, JI D, LU W, et al. Bone marrow mesenchymal stem cell-derived exosomes induce the Th17/Treg imbalance in immune thrombocytopenia through miR-146a-5p/IRAK1 axis[J]. Hum Cell, 2021,34(5): 1360-1374. doi:10.1007/s13577-021-00547-7
doi: 10.1007/s13577-021-00547-7
|
18 |
鲍静, 许晗, 汪万杰, 等. miR-141-5p/ZNF705A对慢性粒细胞白血病细胞源外泌体调控骨髓间充质干细胞黏附作用的机制[J]. 中国药理学通报, 2024,40(3): 506-514.
|
19 |
ALDOGHACHI A F, LOH J K, WANG M L, et al. Current developments and therapeutic potentials of exosomes from induced pluripotent stem cells-derived mesenchymal stem cells[J]. J Chin Med Assoc, 2023,86(4): 356-365. doi:10.1097/jcma.0000000000000899
doi: 10.1097/jcma.0000000000000899
|
20 |
王双敏, 汪显耀, 何志旭. 工程化间充质干细胞来源外泌体在靶向递送抗肿瘤药物中的应用与问题[J]. 中国组织工程研究, 2025,29(23): 4975-4983. doi:10.12307/2025.092
doi: 10.12307/2025.092
|
21 |
杨英, 饶春明. 干细胞产品质量控制分析方法研究进展[J]. 药物分析杂志, 2025,45(1): 4-11.
|
22 |
WU D, ZHAO X, XIE J, et al. Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine[J]. Cell Prolif, 2024,57(8): e13630. doi:10.1111/cpr.13630
doi: 10.1111/cpr.13630
|
23 |
周洋, 刘可鑫, 王得利, 等. 工程化细胞外囊泡修复骨缺损的再生作用[J]. 中国组织工程研究, 2025,29(36): 7839-7847.
|
24 |
WANG H, HE J, XU C, et al. Decoding Human Megakaryocyte Development[J]. Cell Stem Cell, 2021,28(3): 535-549. doi:10.1016/j.stem.2020.11.006
doi: 10.1016/j.stem.2020.11.006
|
25 |
BEURET L, FORTIER-BEAULIEU S P, RONDEAU V, et al. Mek1 and Mek2 Functional Redundancy in Erythropoiesis[J]. Front Cell Dev Biol, 2021,9: 639022. doi:10.3389/fcell.2021.639022
doi: 10.3389/fcell.2021.639022
|
26 |
MAZHARIAN A, WATSON S P, SEVERIN S. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation[J]. Exp Hematol, 2009,37(10): 1238-1249. doi:10.1016/j.exphem.2009.07.006
doi: 10.1016/j.exphem.2009.07.006
|
27 |
LI Y, LAI J, RAN M, et al. Alnustone promotes megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway[J]. Eur J Pharmacol, 2024,971: 176548. doi:10.1016/j.ejphar.2024.176548
doi: 10.1016/j.ejphar.2024.176548
|